Bile Acid Regulates Mononuclear Phagocytes and T Helper 17 Cells to Control Candida albicans in the Intestine
TCA significantly decreased the mononuclear phagocytes in the intestine. Groups of mice infected with ~1 × 107 CFU of CA SC5314 via oral gavage. Control group received sterile drinking water and TCA group received drinking water containing 1% TCA. Eight days post-infection and treatment, mice were euthanized to isolated mononuclear cells from small and large intestine. Cells were labeled with indicated markers to determine macrophages and neutrophils population in the intestine. (A) Representative images; (B) percentage and (C) absolute number of CD11b+ CX3CR1+ phagocytes from small intestine (SI) and large intestine (LI) of untreated and TCA-treated mice were shown. (D) Representative images; (E) percentage and (F) absolute number of CD11b+ F4/80+ macrophages from SI and LI of untreated and TCA-treated mice were shown. (G) Representative images; (H) percentage and (I) absolute number of CD11b+ Ly6G+ neutrophils from SI and LI of untreated and TCA-treated mice were shown. Data shown are combined from 2 independent experiments for a total of 7 to 10 mice per group. Data represent mean ± SEM. The statistical significance of differences between groups was determined by the Mann-Whitney U test with * p ≤ 0.05, ** p ≤ 0.01, and *** p ≤ 0.001.
"> Figure 2TCA significantly decreased Th2 and Th17 cells in the intestine. Groups of mice infected with ~1 × 107 CFU CA SC5314 via oral gavage. Control group received sterile drinking water and TCA group received drinking water containing 1% TCA. Eight days post-infection and treatment, mice were euthanized to isolated mononuclear cells from small and large intestine. Cells were labeled with indicated markers to determine Th1, Th2 and Th17 population in the intestine of CA-infected mice. (A) Representative images; (B) percentage and (C) absolute number of CD4+ IFNγ+ T helper 1 cells from small intestine (SI) and large intestine (LI) of untreated and TCA-treated mice were shown. (D) Representative images; (E) percentage and (F) absolute number of CD4+ IL5+ T helper 2 cells from SI and LI of untreated and TCA-treated mice were shown. (G) Representative images; (H) percentage and (I) absolute number of CD4+ IL17A+ T helper 17 cells from SI and LI of untreated and TCA-treated mice were shown. Data shown are combined from 2 independent experiments for a total of 7 to 10 mice per group. Data represent mean ± SEM. The statistical signficance of differences between groups was determined by the Mann-Whitney U test with * p ≤ 0.05, and *** p ≤ 0.001.
">
Abstract
Invasive Candida albicans (CA) infections often arise from the intestine and cause life-threatening infections in immunocompromised individuals. The role of gut commensal microbiota, metabolites, and host factors in the regulation of CA colonization in the intestine is poorly understood. Previous findings from our lab indicate that taurocholic acid (TCA), a major bile acid present in the intestine, promotes CA colonization and dissemination. Here, we report that oral administration of TCA to CA-infected mice significantly decreased the number of mononuclear phagocytes and CD4+ IL17A+ T helper 17 cells that play a critical role in controlling CA in the intestine V体育官网入口. Collectively, our results indicate that TCA modulates mucosal innate and adaptive immune responses to promote CA colonization in the intestine. Keywords: bile acids; innate and adaptive immunity; fungal colonization ."V体育2025版" 1. Introduction
2. Materials and Methods
3. Results and Discussion
VSports app下载 - Supplementary Materials
"VSports最新版本" Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest (VSports app下载)
References
- Angarone, M. Fungal infections in cancer patients. Cancer Treat Res. 2014, 161, 129–155. [Google Scholar] [CrossRef] [PubMed]
- Low, C.Y.; Rotstein, C. Emerging fungal infections in immunocompromised patients. F1000 Med. Rep. 2011, 3, 14. [Google Scholar (VSports手机版)] [CrossRef]
- Perfect, J.R.; Hachem, R.; Wingard, J.R. Update on epidemiology of and preventive strategies for invasive fungal infections in cancer patients. Clin. Infect. Dis. Off. Publ. Infect. Dis. Soc. Am. 2014, 59 (Suppl. 5), S352–S355. [Google Scholar] [CrossRef] [PubMed]
- Zhai, B.; Ola, M.; Rolling, T.; Tosini, N.L.; Joshowitz, S.; Littmann, E.R.; Amoretti, L.A.; Fontana, E.; Wright, R.J.; Miranda, E.; et al. High-resolution mycobiota analysis reveals dynamic intestinal translocation preceding invasive candidiasis. Nat. Med. 2020, 26, 59–64. [Google Scholar] [CrossRef]
- Alonso-Monge, R.; Gresnigt, M.S.; Roman, E.; Hube, B.; Pla, J. Candida albicans colonization of the gastrointestinal tract: A double-edged sword. PLoS Pathog. 2021, 17, e1009710. [Google Scholar] [CrossRef] [PubMed]
- Krause, R.; Krejs, G.J.; Wenisch, C.; Reisinger, E.C. Elevated fecal Candida counts in patients with antibiotic-associated diarrhea: Role of soluble fecal substances. Clin. Diagn Lab. Immunol. 2003, 10, 167–168. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Samonis, G.; Gikas, A.; Anaissie, E.J.; Vrenzos, G.; Maraki, S.; Tselentis, Y.; Bodey, G.P. Prospective evaluation of effects of broad-spectrum antibiotics on gastrointestinal yeast colonization of humans. Antimicrob. Agents Chemother. 1993, 37, 51–53. [Google Scholar] [CrossRef]
- Netea, M.G.; Joosten, L.A.; van der Meer, J.W.; Kullberg, B.J.; van de Veerdonk, F.L. Immune defence against Candida fungal infections. Nat. Rev. Immunol. 2015, 15, 630–642. [Google Scholar] [CrossRef]
- Koh, A.Y.; Kohler, J.R.; Coggshall, K.T.; Van Rooijen, N.; Pier, G.B. Mucosal damage and neutropenia are required for Candida albicans dissemination. PLoS Pathog. 2008, 4, e35. ["V体育官网入口" Google Scholar] [CrossRef] [PubMed]
- Drummond, R.A.; Gaffen, S.L.; Hise, A.G.; Brown, G.D. Innate Defense against Fungal Pathogens. Cold Spring Harb. Perspect. Med. 2014, 5, a019620. [Google Scholar (VSports在线直播)] [CrossRef]
- Conti, H.R.; Huppler, A.R.; Whibley, N.; Gaffen, S.L. Animal models for candidiasis. Curr. Protoc. Immunol. 2014, 105, 19.6.1–19.6.7. [Google Scholar] [CrossRef] [PubMed]
- Fan, D.; Coughlin, L.A.; Neubauer, M.M.; Kim, J.; Kim, M.S.; Zhan, X.; Simms-Waldrip, T.R.; Xie, Y.; Hooper, L.V.; Koh, A.Y. Activation of HIF-1alpha and LL-37 by commensal bacteria inhibits Candida albicans colonization. Nat. Med. 2015, 21, 808–814. [Google Scholar] [CrossRef]
- Gutierrez, D.; Weinstock, A.; Antharam, V.C.; Gu, H.; Jasbi, P.; Shi, X.; Dirks, B.; Krajmalnik-Brown, R.; Maldonado, J.; Guinan, J.; et al. Antibiotic-induced gut metabolome and microbiome alterations increase the susceptibility to Candida albicans colonization in the gastrointestinal tract. FEMS Microbiol. Ecol. 2020, 96, fiz187. [VSports注册入口 - Google Scholar] [CrossRef]
- Thangamani, S.; Monasky, R.; Lee, J.K.; Antharam, V.; HogenEsch, H.; Hazbun, T.R.; Jin, Y.; Gu, H.; Guo, G.L. Bile Acid Regulates the Colonization and Dissemination of Candida albicans from the Gastrointestinal Tract by Controlling Host Defense System and Microbiota. J. Fungi 2021, 7, 1030. [Google Scholar] [CrossRef] [PubMed]
- Reales-Calderon, J.A.; Tso, G.H.W.; Tan, A.S.M.; Hor, P.X.; Bohme, J.; Teng, K.W.W.; Newell, E.W.; Singhal, A.; Pavelka, N. Gut-Evolved Candida albicans Induces Metabolic Changes in Neutrophils. Front. Cell. Infect. Microbiol. 2021, 11, 743735. [Google Scholar] [CrossRef] [PubMed]
- Li, X.V.; Leonardi, I.; Putzel, G.G.; Semon, A.; Fiers, W.D.; Kusakabe, T.; Lin, W.Y.; Gao, I.H.; Doron, I.; Gutierrez-Guerrero, A.; et al. Immune regulation by fungal strain diversity in inflammatory bowel disease. Nature 2022, 603, 672–678. [Google Scholar] [CrossRef] [PubMed]
- Qiu, Z.; Sheridan, B.S. Isolating Lymphocytes from the Mouse Small Intestinal Immune System. J. Vis. Exp. 2018, 132, e57281. [Google Scholar] [CrossRef]
- Couter, C.J.; Surana, N.K. Isolation and Flow Cytometric Characterization of Murine Small Intestinal Lymphocytes. J. Vis. Exp. 2016, 111, e54114. [Google Scholar] [CrossRef]
- Leonardi, I.; Li, X.; Semon, A.; Li, D.; Doron, I.; Putzel, G.; Bar, A.; Prieto, D.; Rescigno, M.; McGovern, D.P.B.; et al. CX3CR1+ mononuclear phagocytes control immunity to intestinal fungi. Science 2018, 359, 232–236. [Google Scholar] [CrossRef]
- Munoz, J.F.; Delorey, T.; Ford, C.B.; Li, B.Y.; Thompson, D.A.; Rao, R.P.; Cuomo, C.A. Coordinated host-pathogen transcriptional dynamics revealed using sorted subpopulations and single macrophages infected with Candida albicans. Nat. Commun. 2019, 10, 1607. [Google Scholar] [CrossRef]
- Honda, M.; Surewaard, B.G.J.; Watanabe, M.; Hedrick, C.C.; Lee, W.Y.; Brown, K.; McCoy, K.D.; Kubes, P. Perivascular localization of macrophages in the intestinal mucosa is regulated by Nr4a1 and the microbiome. Nat. Commun. 2020, 11, 1329. [Google Scholar] [CrossRef]
- Medina-Contreras, O.; Geem, D.; Laur, O.; Williams, I.R.; Lira, S.A.; Nusrat, A.; Parkos, C.A.; Denning, T.L. CX3CR1 regulates intestinal macrophage homeostasis, bacterial translocation, and colitogenic Th17 responses in mice. J. Clin. Investig. 2011, 121, 4787–4795. [Google Scholar] [CrossRef]
- Hernandez-Santos, N.; Gaffen, S.L. Th17 cells in immunity to Candida albicans. Cell Host Microbe 2012, 11, 425–435. [Google Scholar] [CrossRef]
- Piccinni, M.P.; Vultaggio, A.; Scaletti, C.; Livi, C.; Gomez, M.J.; Giudizi, M.G.; Biagiotti, R.; Cassone, A.; Romagnani, S.; Maggi, E. Type 1 T helper cells specific for Candida albicans antigens in peripheral blood and vaginal mucosa of women with recurrent vaginal candidiasis. J. Infect. Dis. 2002, 186, 87–93. [Google Scholar] [CrossRef][Green Version]
- Balish, E.; Wagner, R.D.; Vazquez-Torres, A.; Pierson, C.; Warner, T. Candidiasis in interferon-gamma knockout (IFN-gamma−/−) mice. J. Infect. Dis. 1998, 178, 478–487. [Google Scholar] [CrossRef]
- Bishu, S.; Hernandez-Santos, N.; Simpson-Abelson, M.R.; Huppler, A.R.; Conti, H.R.; Ghilardi, N.; Mamo, A.J.; Gaffen, S.L. The adaptor CARD9 is required for adaptive but not innate immunity to oral mucosal Candida albicans infections. Infect. Immun. 2014, 82, 1173–1180. [Google Scholar] [CrossRef]
- Kirchner, F.R.; LeibundGut-Landmann, S. Tissue-resident memory Th17 cells maintain stable fungal commensalism in the oral mucosa. Mucosal Immunol. 2021, 14, 455–467. [Google Scholar] [CrossRef]
- Conti, H.R.; Shen, F.; Nayyar, N.; Stocum, E.; Sun, J.N.; Lindemann, M.J.; Ho, A.W.; Hai, J.H.; Yu, J.J.; Jung, J.W.; et al. Th17 cells and IL-17 receptor signaling are essential for mucosal host defense against oral candidiasis. J. Exp. Med. 2009, 206, 299–311. ["VSports注册入口" Google Scholar] [CrossRef]
- Cenci, E.; Mencacci, A.; Spaccapelo, R.; Tonnetti, L.; Mosci, P.; Enssle, K.H.; Puccetti, P.; Romani, L.; Bistoni, F. T helper cell type 1 (Th1)- and Th2-like responses are present in mice with gastric candidiasis but protective immunity is associated with Th1 development. J. Infect. Dis. 1995, 171, 1279–1288. [Google Scholar] [CrossRef]
- Wahlstrom, A.; Sayin, S.I.; Marschall, H.U.; Backhed, F. Intestinal Crosstalk between Bile Acids and Microbiota and Its Impact on Host Metabolism. Cell Metab. 2016, 24, 41–50. [Google Scholar] [CrossRef]
- Zarrinpar, A.; Chaix, A.; Xu, Z.Z.; Chang, M.W.; Marotz, C.A.; Saghatelian, A.; Knight, R.; Panda, S. Antibiotic-induced microbiome depletion alters metabolic homeostasis by affecting gut signaling and colonic metabolism. Nat. Commun. 2018, 9, 2872. [Google Scholar] [CrossRef]
- Dekaney, C.M.; von Allmen, D.C.; Garrison, A.P.; Rigby, R.J.; Lund, P.K.; Henning, S.J.; Helmrath, M.A. Bacterial-dependent up-regulation of intestinal bile acid binding protein and transport is FXR-mediated following ileo-cecal resection. Surgery 2008, 144, 174–181. [Google Scholar] [CrossRef]
- Xun, Z.; Lin, J.; Yu, Q.; Liu, C.; Huang, J.; Shang, H.; Guo, J.; Ye, Y.; Wu, W.; Zeng, Y.; et al. Taurocholic acid inhibits the response to interferon-alpha therapy in patients with HBeAg-positive chronic hepatitis B by impairing CD8+ T and NK cell function. Cell. Mol. Immunol. 2021, 18, 461–471. [Google Scholar] [CrossRef] [PubMed]
- Fiorucci, S.; Biagioli, M.; Zampella, A.; Distrutti, E. Bile Acids Activated Receptors Regulate Innate Immunity. Front. Immunol. 2018, 9, 1853. [Google Scholar] [CrossRef] [PubMed]
- Vavassori, P.; Mencarelli, A.; Renga, B.; Distrutti, E.; Fiorucci, S. The bile acid receptor FXR is a modulator of intestinal innate immunity. J. Immunol. 2009, 183, 6251–6261. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Zhang, Q.; Peng, J.; Jiang, C.; Zhang, Y.; Shen, L.; Dong, J.; Wang, Y.; Jiang, Y. Activation of farnesoid X receptor downregulates monocyte chemoattractant protein-1 in murine macrophage. Biochem. Biophys. Res. Commun. 2015, 467, 841–846. [Google Scholar] [CrossRef] [PubMed]
- Out, C.; Patankar, J.V.; Doktorova, M.; Boesjes, M.; Bos, T.; de Boer, S.; Havinga, R.; Wolters, H.; Boverhof, R.; van Dijk, T.H.; et al. Gut microbiota inhibit Asbt-dependent intestinal bile acid reabsorption via Gata4. J. Hepatol. 2015, 63, 697–704. [V体育官网 - Google Scholar] [CrossRef]
- Robinson, J.I.; Weir, W.H.; Crowley, J.R.; Hink, T.; Reske, K.A.; Kwon, J.H.; Burnham, C.D.; Dubberke, E.R.; Mucha, P.J.; Henderson, J.P. Metabolomic networks connect host-microbiome processes to human Clostridioides difficile infections. J. Clin. Investig. 2019, 129, 3792–3806. [VSports手机版 - Google Scholar] [CrossRef]
- Patton, L.; Li, N.; Garrett, T.J.; Ruoss, J.L.; Russell, J.T.; de la Cruz, D.; Bazacliu, C.; Polin, R.A.; Triplett, E.W.; Neu, J. Antibiotics Effects on the Fecal Metabolome in Preterm Infants. Metabolites 2020, 10, 331. [Google Scholar] [CrossRef]
- Reikvam, H.; Gronningsaeter, I.S.; Mosevoll, K.A.; Lindas, R.; Hatfield, K.; Bruserud, O. Patients with Treatment-Requiring Chronic Graft versus Host Disease after Allogeneic Stem Cell Transplantation Have Altered Metabolic Profiles due to the Disease and Immunosuppressive Therapy: Potential Implication for Biomarkers. Front. Immunol. 2017, 8, 1979. ["VSports app下载" Google Scholar] [CrossRef]
- Ridlon, J.M.; Harris, S.C.; Bhowmik, S.; Kang, D.J.; Hylemon, P.B. Consequences of bile salt biotransformations by intestinal bacteria. Gut Microbes 2016, 7, 22–39. [Google Scholar] [CrossRef] [PubMed]
- Begley, M.; Hill, C.; Gahan, C.G. Bile salt hydrolase activity in probiotics. Appl. Environ. Microbiol. 2006, 72, 1729–1738. ["VSports app下载" Google Scholar] [CrossRef]
- O’Flaherty, S.; Briner Crawley, A.; Theriot, C.M.; Barrangou, R. The Lactobacillus Bile Salt Hydrolase Repertoire Reveals Niche-Specific Adaptation. mSphere 2018, 3, e00140-18. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Datta, A.; Hernandez-Franco, J.F.; Park, S.; Olson, M.R.; HogenEsch, H.; Thangamani, S. Bile Acid Regulates Mononuclear Phagocytes and T Helper 17 Cells to Control Candida albicans in the Intestine. J. Fungi 2022, 8, 610. https://doi.org/10.3390/jof8060610
Datta A, Hernandez-Franco JF, Park S, Olson MR, HogenEsch H, Thangamani S. Bile Acid Regulates Mononuclear Phagocytes and T Helper 17 Cells to Control Candida albicans in the Intestine. Journal of Fungi. 2022; 8(6):610. https://doi.org/10.3390/jof8060610
Chicago/Turabian StyleDatta, Abhishek, Juan F. Hernandez-Franco, Sungtae Park, Matthew R. Olson, Harm HogenEsch, and Shankar Thangamani. 2022. "Bile Acid Regulates Mononuclear Phagocytes and T Helper 17 Cells to Control Candida albicans in the Intestine" Journal of Fungi 8, no. 6: 610. https://doi.org/10.3390/jof8060610
APA StyleDatta, A., Hernandez-Franco, J. F., Park, S., Olson, M. R., HogenEsch, H., & Thangamani, S. (2022). Bile Acid Regulates Mononuclear Phagocytes and T Helper 17 Cells to Control Candida albicans in the Intestine. Journal of Fungi, 8(6), 610. https://doi.org/10.3390/jof8060610