Loss of Diurnal Oscillatory Rhythms in Gut Microbiota Correlates with Changes in Circulating Metabolites in Type 2 Diabetic db/db Mice (V体育安卓版)
Diurnal oscillatory rhythms of the gut microbiota at the genus level in type 2 diabetes. Bacterial 16SrRNA sequence analysis was performed in fecal samples from 10 month old db/db (red) and aged-matched controls, db/m (black) collected every 4 h for a 24-h period at ZT0, ZT4, ZT8, ZT12, ZT16, ZT20. ZT indicates zeitgeber time, i.e., hours after the lights are on. (A–P) Identified OTUs belonging to each genus were summed up and cosinor analysis was performed for each genus. n = 3 per time point per group. Asterisks indicate the genera that exhibit significant oscillatory rhythmicity using the zero -amplitude test with a p-value of less than 0.05.
"> Figure 2Global metabolomic analysis of plasma metabolites. Blood samples were collected at ZT5 (day) and at ZT17 (night) from 10-month-old db/db (diabetic) and aged-matched db/m (control) mice. Untargeted global metabolomics analysis was performed with the Metabolon Platform (Metabolon Inc). Statistically significant different metabolites were used for the analysis with MetaboAnalyst. (A) PCA analysis. (B) Metabolic pathway analysis of metabolites that were different in the transition from day to night in control and diabetic groups. (C) Venn graphs of metabolites that were different in the transition from day to night in control and diabetic groups. (D) Enrichment analysis of metabolites that similarly changed in the transition from day to night in control and diabetic groups. (E) Enrichment analysis of metabolites that changed in the transition from day to night only in control. (F) Enrichment analysis of metabolites that changed in the transition from day to night only in diabetes. n = 3 per time point per group.
"> Figure 3Heatmap of plasma metabolites that changed during the transition from day to night. Blood samples were collected at day time (ZT5) and at night time (ZT17) from 10-month-old db/db (diabetic) and aged-matched db/m (control) mice. Untargeted global metabolomics analysis was performed with the Metabolon Platform (Metabolon Inc). MetaboAnalyst was used for the analysis. (A) Heatmap of statistically significant metabolites. We identified clusters that gained diurnal rhythmic patterns (increased (Cluster 1) or decreased (Cluster 3) in diabetes in the day but did not change in controls and clusters that lost diurnal rhythmic patterns in diabetes (increased (Cluster 2) or decreased (Cluster 4) in control in the day but did not change in diabetes. (B) Enrichment analysis of metabolites that gained rhythmic patterns in diabetes (Cluster 1 and 3). (C) Enrichment analysis of metabolites that lost rhythmic patterns in diabetes (Cluster 2 and 4). n = 3 per time point per group.
"> Figure 4Pathways of metabolites that showed up in the cluster that lost diurnal patterns in type 2 diabetes (T2D). Blood samples were collected at day time (ZT5) and at night time (ZT17) from 10-month-old db/db (diabetes, red) and aged-matched db/m (control, black) mice. Untargeted global metabolomics analysis was performed with the Metabolon Platform (Metabolon Inc). (A) Histidine metabolism pathway. (B) Betaine metabolism pathway. (C) Methionine/cysteine pathway. n = 3 per time point per group. Two-way ANOVA. (*) indicates statistical difference p < 0.05, and (#) p < 0.01 in post-hoc comparisons. y-axis shows the volume and median = 1 normalized values of area under the curve values form each metabolite. Bars above each chart (grey vs. white) indicate night vs. day.
"> Figure 5Pathways of metabolites that showed up in the cluster that lost diurnal patterns in type 2 diabetes (T2D). Blood samples were collected at day time (ZT5) and at night time (ZT17) from 10-month-old db/db (red) and aged-matched db/m (black) mice. Untargeted global metabolomics analysis was performed with the Metabolon Platform (Metabolon Inc). (A) Glycolysis, (B) TCA cycle and urea cycle, and (C) polyamine metabolism. n = 3 per time point per group. Two-way ANOVA. (*) indicate statistical difference p < 0.05, and (#) p < 0.01 in post-hoc comparisons. y-axis shows the volume and median = 1 normalized values of area under the curve values form each metabolite. Bars above each chart (grey vs. white) indicate night vs. day.
"> Figure 6Diurnal activity, food consumption, and circadian gene expression in type 2 diabetic mice (T2D). 10-month-old db/db (red) and aged-matched controls, db/m (black). (A,B) All measurements were performed after a 48-h acclimation period followed by 48-h of data collection every 10 min. (A) Mean activity over the night period (19:00–07:00) and the day period (07:00–19:00). n = 8 per group. Two-way ANOVA. (*) indicate statistical significance at post-hoc multiple comparison test. (B) Food consumption during the dark period and the day. n = 8 per group. Two-way ANOVA. Asterisks indicate statistical significance at post-hoc multiple comparison test. (C) mRNA expression of Per-2 in colonic tissue (n = 3). Two-way ANOVA. (*) indicate statistical difference p < 0.05, and (#) p < 0.01 in post-hoc comparisons. (D) mRNA expression of Bmal-1 in colonic tissue. (n = 3). Two-way ANOVA. (*) indicate statistical difference p < 0.05, and (#) p < 0.01 in post-hoc comparisons.
">
Abstract
Our hypothesis is that diabetes leads to loss of diurnal oscillatory rhythms in gut microbiota altering circulating metabolites. We performed an observational study where we compared diurnal changes of the gut microbiota with temporal changes of plasma metabolites. Metadata analysis from bacterial DNA from fecal pellets collected from 10-month old control (db/m) and type 2 diabetic (db/db) mice every 4 h for a 24-h period was used for prediction analysis. Blood plasma was collected at a day and night time points and was used for untargeted global metabolomic analysis V体育官网入口. Feeding and activity behaviors were recorded. Our results show that while diabetic mice exhibited feeding and activity behavior similar to control mice, they exhibited a loss of diurnal oscillations in bacteria of the genus Akkermansia, Bifidobacterium, Allobaculum, Oscillospira and a phase shift in the oscillations of g. Prevotella, proteobacteria, and actinobacteria. Analysis of the circulating metabolites showed alterations in the diurnal pattern of metabolic pathways where bacteria have been implicated, such as the histidine, betaine, and methionine/cysteine pathway, mitochondrial function and the urea cycle. Functional analysis of the differential microbes revealed that during the day, when mice are asleep, the microbes of diabetic mice were enriched in processing carbon and pyruvate metabolic pathways instead of xenobiotic degradation as was observed for control mice. Altogether, our study suggests that diabetes led to loss of rhythmic oscillations of many gut microbiota with possible implications for temporal regulation of host metabolic pathways. Keywords: circadian; type 2 diabetes; microbiota; metabolites; histidine; TMAO; methionine/cysteine; TCA cycle; urea cycle .1. Introduction
2. Materials and Methods
V体育ios版 - 2.1. Experimental Design
2.2. Microbiota Analysis (VSports在线直播)
2.3. Statistical Analysis
V体育2025版 - 2.4. Prediction Analysis
2.5. Global Metabolomic Analysis
VSports注册入口 - 2.6. Activity and Food Consumption
2.7. Gene Expression Analysis
3. Results
3.1. Diurnal Rhythmic Oscillations of the Gut Microbiota in Type 2 Diabetic Mice
3.2. Diurnal Patterns of Blood Metabolome in Type 2 Diabetic Mice (V体育安卓版)
3.3. Histidine, Betaine, and Cysteine/Methione Pathway in Type 2 Diabetes
3.4. Glucolysis, TCA, and Urea Cycle in Type 2 Diabetes
3.5. Prediction Analysis of Durnal Patterns in Bacterial Functions
3.6. Circadian Rhythms in Type 2 Diabetic Mice
4. Discussion
5. Conclusions (VSports在线直播)
Supplementary Materials
Author Contributions
V体育安卓版 - Funding
"V体育安卓版" Acknowledgments
Conflicts of Interest
"VSports注册入口" References
- Collaboration, N.C.D.R.F. Worldwide trends in diabetes since 1980: A pooled analysis of 751 population-based studies with 4.4 million participants. Lancet 2016, 387, 1513–1530. ["V体育官网入口" Google Scholar] [CrossRef]
- Kalsbeek, A.; Fliers, E. Daily regulation of hormone profiles. Handb. Exp. Pharmacol. 2013. ["VSports app下载" Google Scholar] [CrossRef]
- Yan, Y.; Salazar, T.E.; Dominguez, J.M.; Nguyen, D.V.; Li Calzi, S.; Bhatwadekar, A.D.; Qi, X.; Busik, J.V.; Boulton, M.E.; Grant, M.B. Dicer expression exhibits a tissue-specific diurnal pattern that is lost during aging and in diabetes. PLoS ONE 2013, 8, 80029. [Google Scholar] [CrossRef] [PubMed]
- Reppert, S.M.; Weaver, D.R. Coordination of circadian timing in mammals. Nature 2002, 418, 935–941. [Google Scholar] [CrossRef] [PubMed]
- Brown, S.A.; Azzi, A. Peripheral circadian oscillators in mammals. Handb. Exp. Pharmacol. 2013. [Google Scholar] [CrossRef]
- Menaker, M.; Murphy, Z.C.; Sellix, M.T. Central control of peripheral circadian oscillators. Curr. Opin. Neurobiol. 2013, 23, 741–746. [Google Scholar] [CrossRef] [PubMed]
- Froy, O.; Miskin, R. Effect of feeding regimens on circadian rhythms: Implications for aging and longevity. Aging (Albany N. Y.) 2010, 2, 7–27. [Google Scholar] [CrossRef] [PubMed]
- Busik, J.V.; Tikhonenko, M.; Bhatwadekar, A.; Opreanu, M.; Yakubova, N.; Caballero, S.; Player, D.; Nakagawa, T.; Afzal, A.; Kielczewski, J.; et al. Diabetic retinopathy is associated with bone marrow neuropathy and a depressed peripheral clock. J. Exp. Med. 2009, 206, 2897–2906. ["V体育ios版" Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Bozack, S.N.; Yan, Y.; Boulton, M.E.; Grant, M.B.; Busik, J.V. Regulation of retinal inflammation by rhythmic expression of MiR-146a in diabetic retina. Investig. Ophthalmol. Vis. Sci. 2014, 55, 3986–3994. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Tikhonenko, M.; Bozack, S.N.; Lydic, T.A.; Yan, L.; Panchy, N.L.; McSorley, K.M.; Faber, M.S.; Yan, Y.; Boulton, M.E.; et al. Changes in the daily rhythm of lipid metabolism in the diabetic retina. PLoS ONE 2014, 9, 95028. [Google Scholar] [CrossRef] [PubMed]
- Crosby, P.; Hamnett, R.; Putker, M.; Hoyle, N.P.; Reed, M.; Karam, C.J.; Maywood, E.S.; Stangherlin, A.; Chesham, J.E.; Hayter, E.A.; et al. Insulin/IGF-1 Drives PERIOD Synthesis to Entrain Circadian Rhythms with Feeding Time. Cell 2019, 177, 896–909. [Google Scholar] [CrossRef] [PubMed]
- Bhatwadekar, A.D.; Yan, Y.; Qi, X.; Thinschmidt, J.S.; Neu, M.B.; Li Calzi, S.; Shaw, L.C.; Dominiguez, J.M.; Busik, J.V.; Lee, C.; et al. Per2 mutation recapitulates the vascular phenotype of diabetes in the retina and bone marrow. Diabetes 2013, 62, 273–282. [Google Scholar] [CrossRef] [PubMed]
- Bhatwadekar, A.D.; Beli, E.; Yanpeng, D.; Chen, J.; Luo, Q.; Alex, A.; Caballero, S.; Dominguez, J.M.; Salazar, T.E.; Busik, J.V.; et al. Conditional Deletion of Bmal1 Accentuates Microvascular and Macrovascular Injury. Am. J. Pathol. 2017. [VSports app下载 - Google Scholar] [CrossRef] [PubMed]
- Delzenne, N.M.; Cani, P.D.; Everard, A.; Neyrinck, A.M.; Bindels, L.B. Gut microorganisms as promising targets for the management of type 2 diabetes. Diabetologia 2015, 58, 2206–2217. ["VSports在线直播" Google Scholar] [CrossRef] [PubMed]
- Qin, J.; Li, Y.; Cai, Z.; Li, S.; Zhu, J.; Zhang, F.; Liang, S.; Zhang, W.; Guan, Y.; Shen, D.; et al. A metagenome-wide association study of gut microbiota in type 2 diabetes. Nature 2012, 490, 55–60. [Google Scholar] [CrossRef] [PubMed]
- Liang, X.; Bushman, F.D.; FitzGerald, G.A. Rhythmicity of the intestinal microbiota is regulated by gender and the host circadian clock. Proc. Natl. Acad. Sci. USA 2015, 112, 10479–10484. ["VSports注册入口" Google Scholar] [CrossRef] [PubMed]
- Thaiss, C.A.; Zeevi, D.; Levy, M.; Zilberman-Schapira, G.; Suez, J.; Tengeler, A.C.; Abramson, L.; Katz, M.N.; Korem, T.; Zmora, N.; et al. Transkingdom control of microbiota diurnal oscillations promotes metabolic homeostasis. Cell 2014, 159, 514–529. [Google Scholar] [CrossRef]
- Zarrinpar, A.; Chaix, A.; Yooseph, S.; Panda, S. Diet and feeding pattern affect the diurnal dynamics of the gut microbiome. Cell Metab. 2014, 20, 1006–1017. [Google Scholar (V体育安卓版)] [CrossRef] [PubMed]
- Montagner, A.; Korecka, A.; Polizzi, A.; Lippi, Y.; Blum, Y.; Canlet, C.; Tremblay-Franco, M.; Gautier-Stein, A.; Burcelin, R.; Yen, Y.C.; et al. Hepatic circadian clock oscillators and nuclear receptors integrate microbiome-derived signals. Sci. Rep. 2016, 6, 20127. [Google Scholar] [CrossRef] [PubMed]
- Tahara, Y.; Yamazaki, M.; Sukigara, H.; Motohashi, H.; Sasaki, H.; Miyakawa, H.; Haraguchi, A.; Ikeda, Y.; Fukuda, S.; Shibata, S. Gut Microbiota-Derived Short Chain Fatty Acids Induce Circadian Clock Entrainment in Mouse Peripheral Tissue. Sci. Rep. 2018, 8, 1395. [Google Scholar] [CrossRef] [PubMed]
- Thaiss, C.A.; Levy, M.; Korem, T.; Dohnalova, L.; Shapiro, H.; Jaitin, D.A.; David, E.; Winter, D.R.; Gury-BenAri, M.; Tatirovsky, E.; et al. Microbiota Diurnal Rhythmicity Programs Host Transcriptome Oscillations. Cell 2016, 167, 1495–1510. [Google Scholar] [CrossRef] [PubMed]
- Liang, X.; FitzGerald, G.A. Timing the Microbes: The Circadian Rhythm of the Gut Microbiome. J. Biol. Rhythm. 2017, 32, 505–515. [Google Scholar] [CrossRef] [PubMed]
- Beli, E.; Yan, Y.; Moldovan, L.; Vieira, C.P.; Gao, R.; Duan, Y.; Prasad, R.; Bhatwadekar, A.; White, F.A.; Townsend, S.D.; et al. Restructuring of the Gut Microbiome by Intermittent Fasting Prevents Retinopathy and Prolongs Survival in db/db Mice. Diabetes 2018, 67, 1867–1879. [Google Scholar] [CrossRef] [PubMed]
- Iwai, S.; Weinmaier, T.; Schmidt, B.L.; Albertson, D.G.; Poloso, N.J.; Dabbagh, K.; DeSantis, T.Z. Piphillin: Improved Prediction of Metagenomic Content by Direct Inference from Human Microbiomes. PLoS ONE 2016, 11, 0166104. [Google Scholar (VSports在线直播)] [CrossRef] [PubMed]
- Love, M.I.; Huber, W.; Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014, 15, 550. [Google Scholar] [CrossRef] [PubMed]
- Dhariwal, A.; Chong, J.; Habib, S.; King, I.L.; Agellon, L.B.; Xia, J. MicrobiomeAnalyst: A web-based tool for comprehensive statistical, visual and meta-analysis of microbiome data. Nucleic Acids Res. 2017, 45, 180–188. [Google Scholar (VSports注册入口)] [CrossRef] [PubMed]
- Xia, J.; Wishart, D.S. Metabolomic data processing, analysis, and interpretation using MetaboAnalyst. Curr. Protoc. Bioinforma. 2011, 34, 10–14. [Google Scholar] [CrossRef] [PubMed]
- Koh, A.; Molinaro, A.; Stahlman, M.; Khan, M.T.; Schmidt, C.; Manneras-Holm, L.; Wu, H.; Carreras, A.; Jeong, H.; Olofsson, L.E.; et al. Microbially Produced Imidazole Propionate Impairs Insulin Signaling through mTORC1. Cell 2018, 175, 947–961. [V体育安卓版 - Google Scholar] [CrossRef]
- Kang, J.H.; Kim, K.S.; Choi, S.Y.; Kwon, H.Y.; Won, M.H.; Kang, T.C. Carnosine and related dipeptides protect human ceruloplasmin against peroxyl radical-mediated modification. Mol. Cells 2002, 13, 498–502. [Google Scholar (V体育平台登录)]
- Kohen, R.; Yamamoto, Y.; Cundy, K.C.; Ames, B.N. Antioxidant activity of carnosine, homocarnosine, and anserine present in muscle and brain. Proc. Natl. Acad. Sci. USA 1988, 85, 3175–3179. [Google Scholar] [CrossRef]
- Quinn, P.J.; Boldyrev, A.A.; Formazuyk, V.E. Carnosine: Its properties, functions and potential therapeutic applications. Mol. Asp. Med. 1992, 13, 379–444. [Google Scholar] [CrossRef]
- Tang, W.H.; Wang, Z.; Levison, B.S.; Koeth, R.A.; Britt, E.B.; Fu, X.; Wu, Y.; Hazen, S.L. Intestinal microbial metabolism of phosphatidylcholine and cardiovascular risk. N. Engl. J. Med. 2013, 368, 1575–1584. [Google Scholar] [CrossRef] [PubMed]
- Leone, V.; Gibbons, S.M.; Martinez, K.; Hutchison, A.L.; Huang, E.Y.; Cham, C.M.; Pierre, J.F.; Heneghan, A.F.; Nadimpalli, A.; Hubert, N.; et al. Effects of diurnal variation of gut microbes and high-fat feeding on host circadian clock function and metabolism. Cell Host Microbe 2015, 17, 681–689. [V体育平台登录 - Google Scholar] [CrossRef] [PubMed]
- Duncan, S.H.; Barcenilla, A.; Stewart, C.S.; Pryde, S.E.; Flint, H.J. Acetate utilization and butyryl coenzyme A (CoA):acetate-CoA transferase in butyrate-producing bacteria from the human large intestine. Appl. Environ. Microbiol. 2002, 68, 5186–5190. [Google Scholar] [CrossRef]
- Meehan, C.J.; Beiko, R.G. A phylogenomic view of ecological specialization in the Lachnospiraceae, a family of digestive tract-associated bacteria. Genome Biol. Evol. 2014, 6, 703–713. [Google Scholar] [CrossRef]
- Louis, P.; Hold, G.L.; Flint, H.J. The gut microbiota, bacterial metabolites and colorectal cancer. Nat. Rev. Microbiol. 2014, 12, 661–672. [Google Scholar] [CrossRef]
- Bourriaud, C.; Robins, R.J.; Martin, L.; Kozlowski, F.; Tenailleau, E.; Cherbut, C.; Michel, C. Lactate is mainly fermented to butyrate by human intestinal microfloras but inter-individual variation is evident. J. Appl. Microbiol. 2005, 99, 201–212. [Google Scholar] [CrossRef]
- Scheiman, J.; Luber, J.M.; Chavkin, T.A.; MacDonald, T.; Tung, A.; Pham, L.D.; Wibowo, M.C.; Wurth, R.C.; Punthambaker, S.; Tierney, B.T.; et al. Meta-omics analysis of elite athletes identifies a performance-enhancing microbe that functions via lactate metabolism. Nat. Med. 2019. [Google Scholar] [CrossRef]
- Clark, A.; Mach, N. The Crosstalk between the Gut Microbiota and Mitochondria during Exercise. Front. Physiol. 2017, 8, 319. [V体育ios版 - Google Scholar] [CrossRef]
- Levy, M.; Thaiss, C.A.; Zeevi, D.; Dohnalova, L.; Zilberman-Schapira, G.; Mahdi, J.A.; David, E.; Savidor, A.; Korem, T.; Herzig, Y.; et al. Microbiota-Modulated Metabolites Shape the Intestinal Microenvironment by Regulating NLRP6 Inflammasome Signaling. Cell 2015, 163, 1428–1443. [Google Scholar] [CrossRef]
- Joseph, J.; Loscalzo, J. Nutri(meta)genetics and cardiovascular disease: Novel concepts in the interaction of diet and genomic variation. Curr. Atheroscler. Rep. 2015, 17, 505. [Google Scholar] [CrossRef] [PubMed]
- Koeth, R.A.; Wang, Z.; Levison, B.S.; Buffa, J.A.; Org, E.; Sheehy, B.T.; Britt, E.B.; Fu, X.; Wu, Y.; Li, L.; et al. Intestinal microbiota metabolism of L-carnitine, a nutrient in red meat, promotes atherosclerosis. Nat. Med. 2013, 19, 576–585. [Google Scholar] [CrossRef] [PubMed]
- Mardinoglu, A.; Shoaie, S.; Bergentall, M.; Ghaffari, P.; Zhang, C.; Larsson, E.; Backhed, F.; Nielsen, J. The gut microbiota modulates host amino acid and glutathione metabolism in mice. Mol. Syst. Biol. 2015, 11, 834. [Google Scholar] [CrossRef] [PubMed]
- Carbonero, F.; Benefiel, A.C.; Alizadeh-Ghamsari, A.H.; Gaskins, H.R. Microbial pathways in colonic sulfur metabolism and links with health and disease. Front. Physiol. 2012, 3, 448. [Google Scholar] [CrossRef] [PubMed]
- Voigt, R.M.; Forsyth, C.B.; Green, S.J.; Mutlu, E.; Engen, P.; Vitaterna, M.H.; Turek, F.W.; Keshavarzian, A. Circadian disorganization alters intestinal microbiota. PLoS ONE 2014, 9, 97500. [Google Scholar] [CrossRef]
- Zwighaft, Z.; Aviram, R.; Shalev, M.; Rousso-Noori, L.; Kraut-Cohen, J.; Golik, M.; Brandis, A.; Reinke, H.; Aharoni, A.; Kahana, C.; et al. Circadian Clock Control by Polyamine Levels through a Mechanism that Declines with Age. Cell Metab. 2015, 22, 874–885. [Google Scholar] [CrossRef]
- Whang, A.; Nagpal, R.; Yadav, H. Bi-directional drug-microbiome interactions of anti-diabetics. EBioMedicine 2019, 39, 591–602. [VSports在线直播 - Google Scholar] [CrossRef]






| Significantly Altered Metabolites | Number of Metabolites (p ≤ 0.05) | Metabolites ( | ) | |
|---|---|---|---|
| Disease (Main effect) Time (Main effect) Interaction (Main effect) | 294 178 51 | --- --- --- | |
| Pair wise comparisons: | |||
| Diabetes vs Control | at Day | 234 | 170|64 |
| Diabetes vs Control | at Night | 189 | 134|55 |
| Night vs Day | in Control | 113 | 77|36 |
| Night vs Day | in Diabetes | 130 | 70|60 |
| Day vs. Night in Control—Enrichment Analysis | |||||
| Pathway | Total | Expected | Hits | Pval | FDR |
| Zeatin biosynthesis | 3 | 0.0202 | 1 | 0.0201 | 1 |
| Nitrotoluene degradation | 7 | 0.0472 | 1 | 0.0463 | 1 |
| Caffeine metabolism | 9 | 0.0607 | 1 | 0.0592 | 1 |
| Naphthalene degradation | 17 | 0.115 | 1 | 0.109 | 1 |
| Linoleic acid metabolism | 20 | 0.135 | 1 | 0.127 | 1 |
| Drug metabolism - other enzymes | 20 | 0.135 | 1 | 0.127 | 1 |
| Chloroalkane and chloroalkene degradation | 23 | 0.155 | 1 | 0.145 | 1 |
| Various types of N-glycan biosynthesis | 28 | 0.189 | 1 | 0.174 | 1 |
| Folate biosynthesis | 29 | 0.196 | 1 | 0.179 | 1 |
| Fatty acid degradation | 39 | 0.263 | 1 | 0.234 | 1 |
| Day vs. night in Diabetes – Enrichment Analysis | |||||
| Carbon metabolism | 249 | 4.14 | 11 | 0.00167 | 0.247 |
| Pyruvate metabolism | 74 | 1.23 | 4 | 0.0326 | 1 |
| Zeatin biosynthesis | 3 | 0.0499 | 1 | 0.0491 | 1 |
| Citrate cycle (TCA cycle) | 53 | 0.882 | 3 | 0.0562 | 1 |
| 2-Oxocarboxylic acid metabolism | 57 | 0.949 | 3 | 0.0672 | 1 |
| Biosynthesis of amino acids | 222 | 3.7 | 7 | 0.069 | 1 |
| Carbon fixation pathways in prokaryotes | 60 | 0.999 | 3 | 0.0759 | 1 |
| Synthesis and degradation of ketone bodies | 5 | 0.0832 | 1 | 0.0806 | 1 |
| Lysine degradation | 30 | 0.499 | 2 | 0.0876 | 1 |
| Amino sugar and nucleotide sugar metabolism | 64 | 1.07 | 3 | 0.0884 | 1 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite (V体育ios版)
Beli, E.; Prabakaran, S.; Krishnan, P.; Evans-Molina, C.; Grant, M.B. Loss of Diurnal Oscillatory Rhythms in Gut Microbiota Correlates with Changes in Circulating Metabolites in Type 2 Diabetic db/db Mice. Nutrients 2019, 11, 2310. https://doi.org/10.3390/nu11102310
Beli E, Prabakaran S, Krishnan P, Evans-Molina C, Grant MB. Loss of Diurnal Oscillatory Rhythms in Gut Microbiota Correlates with Changes in Circulating Metabolites in Type 2 Diabetic db/db Mice. Nutrients. 2019; 11(10):2310. https://doi.org/10.3390/nu11102310
Chicago/Turabian StyleBeli, Eleni, Samantha Prabakaran, Preethi Krishnan, Carmella Evans-Molina, and Maria B. Grant. 2019. "Loss of Diurnal Oscillatory Rhythms in Gut Microbiota Correlates with Changes in Circulating Metabolites in Type 2 Diabetic db/db Mice" Nutrients 11, no. 10: 2310. https://doi.org/10.3390/nu11102310
APA StyleBeli, E., Prabakaran, S., Krishnan, P., Evans-Molina, C., & Grant, M. B. (2019). Loss of Diurnal Oscillatory Rhythms in Gut Microbiota Correlates with Changes in Circulating Metabolites in Type 2 Diabetic db/db Mice. Nutrients, 11(10), 2310. https://doi.org/10.3390/nu11102310



