"V体育ios版" Perindopril Ameliorates Sodium Valproate-Induced Rat Model of Autism: Involvement of Sirtuin-1, JAK2/STAT3 Axis, PI3K/Akt/GSK-3β Pathway, and PPAR-Gamma Signaling
A timeline schematic diagram for the experimental design.
"> Figure 2Effect of the different treatments on the body weight gain (a significant VS the control group; b significant VS sodium valproate group; c significant VS sodium valproate group treated with 0.5 mg/kg/day perindopril).
"> Figure 3Effect of the different treatments on the mean eye-opening score (^ sodium valproate group VS the control group; # Perindopril groups VS sodium valproate group; $ The group treated with 2 mg/kg/day perindopril VS the group treated with 0.5 mg/kg/day perindopril).
"> Figure 4Swimming performance score in the studied groups (^ sodium valproate group VS the control group; # Perindopril groups VS sodium valproate group; $ The group treated with 2 mg/kg/day perindopril VS the group treated with 0.5 mg/kg/day perindopril).
"> Figure 5Self-grooming test in the studied groups (ns = non-significant; *** = p < 0.001).
"> Figure 6Three-chambered social test in the studied groups (ns = non-significant; *** = p < 0.001).
"> Figure 7Effect of the different doses of perindopril on SIRT1 levels and the redox status of the hippocampal tissues of rats exposed prenatally to sodium valproate (*** = p < 0.001, ns = non-significant).
"> Figure 8Effect of the different doses of perindopril on TGF-β1, IL-1β, IL-6, and MCP-1 levels in the hippocampal tissues of rats exposed prenatally to sodium valproate (*** = p < 0.001, ns = non-significant).
"> Figure 9Effect of the different doses of perindopril on TLR4, NF-κB, myelin basic protein, and NLRP3 inflammasome levels in the hippocampal tissues of rats exposed prenatally to sodium valproate (*** = p < 0.001, ns = non-significant).
"> Figure 10Effect of the different treatments on p-JAK2, STAT3, and PPAR gamma levels in the hippocampal tissues (*** = p < 0.001, ns = non-significant).
"> Figure 11Effect of the different treatments on the PI3K/Akt/GSK-3β axis in the hippocampal tissues (*** = p < 0.001, ns = non-significant).
"> Figure 12Effect of the different treatments on beclin-1 and LC3-II levels in the hippocampal tissues (*** = p < 0.001, ns = non-significant).
"> Figure 13Effect of the different treatments on cleaved caspase 3 and Bax levels in the hippocampal tissues (*** = p < 0.001, ns = non-significant).
"> Figure 14A photomicrograph of H&E stained sections from the hippocampus of (A) the control group with regular adherent arrangement of the pyramidal cells with normal distribution of the polygonal cell bodies, vesicular nuclei, and prominent nucleoli (H&E ×400). (B) Sodium valproate group with disrupted arrangement of the pyramidal cells, evident decrease in the pyramidal cell mass, dystrophic neurons, shrunken hyperchromatic pyknotic nuclei, and condensed chromatin (H&E ×400). (C) Sodium valproate group treated with dimethyl sulfoxide showing dystrophic apoptotic neurons with shrunken hyperchromatic pyknotic nuclei and condensed chromatin (H&E ×400). (D) Sodium valproate group treated with 0.5 mg/kg/day perindopril showing moderate decrease in the number of the apoptotic neurocytic nuclei with evident increase in the number of the normal nuclei (H&E ×400). (E) Sodium valproate group treated with 2 mg/kg/day perindopril showing increased number of the normal neurons (Arrows) and marked decrease in the number of the apoptotic neurons (Arrow heads) (H&E ×400).
"> Figure 15A photomicrograph of Ki-67 stained sections (Streptavidin biotin × 400) of the hippocampus of (A) the control rats showing negative immune reactivity of the pyramidal cells to Ki-67. (B,C) Sodium valproate and sodium valproate + DMSO-treated groups, respectively, showing strongly positive immunostained apoptotic nuclei (Arrows). (D) Sodium valproate group treated with 0.5 mg/kg/day perindopril showing decreased immune reactivity of the neurocytic nuclei to Ki-67 (moderate expression) (Arrows) with a noticeable increase in number of the negatively stained normal nuclei. (E) Sodium valproate group treated with 2 mg/kg/day perindopril showing marked decrease in immune reactivity (weak expression) of the neurocytic nuclei to Ki-67 (Arrows). (F) The Ki-67 labeling index (*** = p < 0.001, ns = non-significant).
"> Figure 16Electron micrographs of ultrathin sections in the hippocampus from rats of (A,B) the control group showing normal appearance of the synaptic cleft (Arrow head), well-defined structure of the synapses with accurate postsynaptic density (Long arrow), normal distribution of the synaptic vesicles (SVs), and normally-shaped mitochondria with normal cristae pattern (M) appearing within their axoplasm. (C,D) Sodium valproate group showing reduced packing density of the synaptic vesicles (SVs) in the presynaptic area with swelling of the nerve endings, blurred and thickened structure of the synaptic cleft without clear marked pre- and post-synaptic membranes (Long arrow), and ultra-structurally changed mitochondria with a blurred cristae structure (M). (E,F) Sodium valproate group treated with DMSO showing scanty distribution of the synaptic vesicles (SVs) in the presynaptic area, marked increase in the post-synaptic density of the synaptic cleft with blurred pre- and post-synaptic membranes (Long arrow), and dilated mitochondria with disrupted cristae (M). (G) Sodium valproate group treated with 0.5 mg/kg/day perindopril showing moderate distribution of the synaptic vesicles (SVs) in the presynaptic area, improvement of the post-synaptic density of the synaptic cleft with clearly marked pre- and post-synaptic membranes (Long arrow), and dilated mitochondria with preserved cristae (M). (H) Sodium valproate group treated with 2 mg/kg/day perindopril showing normal distribution of the synaptic vesicles (SVs) in the presynaptic area, well-defined structure of the synapses with accurate postsynaptic density (Long arrow), and normally distributed mitochondria with normal cristae pattern (M). The illustrations were constructed using SMART SERVIER MEDICAL ART at https://smart.servier.com/, the accessed date was 18 May 2023.
">
Abstract
Background and Objectives: Autism is a developmental disability characterized by impairment of motor functions and social communication together with the development of repetitive or stereotyped behaviors. Neither the exact etiology or the curative treatment of autism are yet completely explored. The goals of this study were to evaluate the possible effects of perindopril on a rat model of autism and to elucidate the possible molecular mechanisms that may contribute to these effects V体育官网入口. Materials and Methods: In a rat model of sodium valproate (VPA)-induced autism, the effect of postnatal administration of different doses of perindopril on growth and motor development, social and repetitive behaviors, sirtuin-1, oxidative stress and inflammatory markers, PI3K/Akt/GSK-3β pathway, JAK2/STAT3 axis, and PPAR-gamma signaling in the hippocampal tissues were investigated. The histopathological and electron microscopic changes elicited by administration of the different treatments were also investigated. Results: Perindopril dose-dependently combatted the effects of prenatal exposure to VPA on growth and maturation, motor development, and social and repetitive behaviors. In addition, the different doses of perindopril ameliorated the effects of prenatal exposure to VPA on sirtuin-1, oxidative stress and inflammatory markers, PI3K/Akt/GSK-3β pathway, JAK2/STAT3 axis, and PPAR-gamma signaling. These effects had a mitigating impact on VPA-induced histopathological and electron microscopic changes in the hippocampal tissues. Conclusions: Perindopril may emerge as a promising agent for amelioration of the pathologic changes of autism spectrum disorders. Keywords: autism; perindopril; valproic acid; neuroinflammation; apoptosis; rats .1. Introduction
"VSports在线直播" 2. Materials and Methods
2.1. Ethical Considerations
2.2. Compounds and Chemicals Used
V体育安卓版 - 2.3. The Experimental Protocol
2.4. Determination of the Effect of Different Treatments on the Animals’ Postnatal Growth and Maturation
2.5. Assessment of the Behavioral Changes in the Studied Groups (VSports手机版)
2.5.1. Swimming Performance Test
2.5.2. Self-Grooming Test
2.5.3. Three-Chambered Social Test
VSports app下载 - 2.6. Determination of the Effect of Different Treatments on the Biochemical Parameters
2.6.1. Tissue Collection and Processing
2.6.2. Assessment of the Redox Status and Sirtuin-1 (SIRT1) Levels in the Hippocampal Tissues
2.6.3. Quantification of the Hippocampal Tissue Content of Transforming Growth Factor Beta 1 (TGF-β1), Interleukin 1 Beta (IL-1β), IL-6, and Monocyte Chemoattractant Protein 1 (MCP-1)
2.6.4. Measurement of the Hippocampal Tissue Content of Toll-like Receptor 4 (TLR4), Nuclear Factor Kappa B (NF-κB), Myelin Basic Protein, and Nod-like Receptor Protein 3 (NLRP3) Inflammasome
2.6.5. Determination of Phosphorylated Janus Kinase 2 (p-JAK2), Signal Transducer and Activator of Transcription-3 (STAT 3), and PPAR Gamma Levels in the Hippocampal Tissues
2.6.6. Assessment of Phosphotylinosital-3-Kinase (PI3K)/Akt/Glycogen Synthase Kinase-3 (GSK-3β) Signaling Pathway in the Hippocampal Tissues
2.6.7. Quantification of the Hippocampal Tissue Content of Autophagy Markers
2.6.8. Assessment of the Apoptotic Changes in the Hippocampal Tissues
2.7. Evaluation of the Histopathological Changes Induced by Different Treatments in the Hippocampal Tissues (VSports在线直播)
2.8. Detection of the Immunoexpression of Ki-67 in the Hippocampal Tissues
VSports手机版 - 2.9. Assessment of the Electron Microscopic Changes in the Hippocampal Tissues
2.10. Statistical Evaluation of the Obtained Data (VSports)
3. Results
3.1. Perindopril Restored the Growth and Maturation Rates of Rats Exposed Prenatally to VPA
3.2. Perindopril Restored the Outcomes of the Behavioral Tests to the Reference Values in Rats Exposed Prenatally to VPA (VSports注册入口)
3.3. Perindopril Restored the Normal Values of SIRT1 and the Redox Status in the Hippocampal Tissues of Rats Prenatally Exposed to VPA (VSports)
3.4. Perindopril Abrogated the Effect of VPA Prenatally on the Hippocampal Tissue Content of TGF-β1, IL-1β, IL-6, and MCP-1
3.5. Perindopril Mitigated the Effects of VPA Prenatally on the Hippocampal Tissue Content of TLR4, NF-κB, Myelin Basic Protein, and NLRP3 Inflammasome
3.6. Perindopril Impeded the Changes Induced by VPA Prenatally in p-JAK2/STAT3/PPAR Gamma Signaling in the Hippocampal Tissues
"V体育ios版" 3.7. Perindopril Curtailed the Changes in PI3K/Akt/GSK-3β Pathway in the Hippocampal Tissues Elicited by Prenatal Exposure to VPA
3.8. Perindopril Curbed the Effects of VPA Prenatally on the Autophagy Markers in the Hippocampal Tissues
3.9. Perindopril Attenuated the Pro-Apoptotic Changes in the Hippocampal Tissues Created by Prenatal Exposure to VPA
3.10. Perindopril Counteracted the Effects of VPA Prenatally on the Histopathological Picture of the Hippocampal Tissues
3.11. Perindopril Induced Significant Detrimental Effects on Ki-67 Immunoexpression in the Hippocampal Tissues of Rats Prenatally Exposure to VPA
"V体育官网" 3.12. Perindopril Significantly Mitigated the Electron Microscopic Changes in the Hippocampal Tissues Elicited by Prenatal Exposure to VPA
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
"V体育2025版" Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hodges, H.; Fealko, C.; Soares, N. Autism spectrum disorder: Definition, epidemiology, causes, and clinical evaluation. Transl. Pediatr. 2020, 9 (Suppl. 1), S55–S65. [VSports注册入口 - Google Scholar] [CrossRef] [PubMed]
- Almandil, N.B.; Alkuroud, D.N.; AbdulAzeez, S.; AlSulaiman, A.; Elaissari, A.; Borgio, J.F. Environmental and Genetic Factors in Autism Spectrum Disorders: Special Emphasis on Data from Arabian Studies. Int. J. Environ. Res. Public Health 2019, 16, 658. [Google Scholar (VSports手机版)] [CrossRef] [PubMed]
- Griffiths, K.K.; Levy, R.J. Evidence of Mitochondrial Dysfunction in Autism: Biochemical Links, Genetic-Based Associations, and Non-Energy-Related Mechanisms. Oxid. Med. Cell. Longev. 2017, 2017, 4314025. [Google Scholar] [CrossRef] [PubMed]
- Lamanna, J.; Meldolesi, J. Autism Spectrum Disorder: Brain Areas Involved, Neurobiological Mechanisms, Diagnoses and Therapies. Int. J. Mol. Sci. 2024, 25, 2423. [Google Scholar] [CrossRef] [PubMed]
- Ha, S.; Sohn, I.J.; Kim, N.; Sim, H.J.; Cheon, K.A. Characteristics of Brains in Autism Spectrum Disorder: Structure, Function and Connectivity across the Lifespan. Exp. Neurobiol. 2015, 24, 273–284. [Google Scholar] [CrossRef]
- Xia, Q.Q.; Singh, A.; Wang, J.; Xuan, Z.X.; Singer, J.D.; Powell, C.M. Autism risk gene Cul3 alters neuronal morphology via caspase-3 activity in mouse hippocampal neurons. Front. Cell. Neurosci. 2024, 18, 1320784. [Google Scholar] [CrossRef]
- Kelly, E.; Escamilla, C.O.; Tsai, P.T. Cerebellar Dysfunction in Autism Spectrum Disorders: Deriving Mechanistic Insights from an Internal Model Framework. Neuroscience 2021, 462, 274–287. [Google Scholar] [CrossRef]
- van der Heijden, M.E.; Gill, J.S.; Sillitoe, R.V. Abnormal Cerebellar Development in Autism Spectrum Disorders. Dev. Neurosci. 2021, 43, 181–190. [Google Scholar] [CrossRef]
- Mapelli, L.; Soda, T.; D’Angelo, E.; Prestori, F. The Cerebellar Involvement in Autism Spectrum Disorders: From the Social Brain to Mouse Models. Int. J. Mol. Sci. 2022, 23, 3894. [Google Scholar] [CrossRef]
- Hu, X.; Li, J.; Fu, M.; Zhao, X.; Wang, W. The JAK/STAT signaling pathway: From bench to clinic. Signal Transduct. Target. Ther. 2021, 6, 402. [V体育2025版 - Google Scholar] [CrossRef]
- Khera, R.; Mehan, S.; Kumar, S.; Sethi, P.; Bhalla, S.; Prajapati, A. Role of JAK-STAT and PPAR-Gamma Signalling Modulators in the Prevention of Autism and Neurological Dysfunctions. Mol. Neurobiol. 2022, 59, 3888–3912. [Google Scholar] [CrossRef] [PubMed]
- Barone, R.; Rizzo, R.; Tabbì, G.; Malaguarnera, M.; Frye, R.E.; Bastin, J. Nuclear Peroxisome Proliferator-Activated Receptors (PPARs) as Therapeutic Targets of Resveratrol for Autism Spectrum Disorder. Int. J. Mol. Sci. 2019, 20, 1878. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Chen, J.; Hu, Y.; Liao, A.; Zheng, W.; Wang, X.; Lan, J.; Shen, J.; Wang, S.; Yang, F.; et al. Progranulin improves neural development via the PI3K/Akt/GSK-3β pathway in the cerebellum of a VPA-induced rat model of ASD. Transl. Psychiatry 2022, 12, 114. [Google Scholar] [CrossRef] [PubMed]
- Jiang, C.C.; Lin, L.S.; Long, S.; Ke, X.Y.; Fukunaga, K.; Lu, Y.M.; Han, F. Signalling pathways in autism spectrum disorder: Mechanisms and therapeutic implications. Signal Transduct. Target. Ther. 2022, 7, 229. [Google Scholar] [CrossRef] [PubMed]
- Caracci, M.O.; Ávila, M.E.; De Ferrari, G.V. Synaptic Wnt/GSK3β Signaling Hub in Autism. Neural Plast. 2016, 2016, 9603751. [Google Scholar] [CrossRef]
- Li, Z.; Zhu, Y.X.; Gu, L.J.; Cheng, Y. Understanding autism spectrum disorders with animal models: Applications, insights, and perspectives. Zool. Res. 2021, 42, 800–824. ["V体育平台登录" Google Scholar] [CrossRef]
- Bjørklund, G.; Meguid, N.A.; El-Bana, M.A.; Tinkov, A.A.; Saad, K.; Dadar, M.; Hemimi, M.; Skalny, A.V.; Hosnedlová, B.; Kizek, R.; et al. Oxidative Stress in Autism Spectrum Disorder. Mol. Neurobiol. 2020, 57, 2314–2332. [Google Scholar] [CrossRef]
- Ornoy, A.; Weinstein-Fudim, L.; Ergaz, Z. Prevention or Amelioration of Autism-Like Symptoms in Animal Models: Will it Bring Us Closer to Treating Human ASD? Int. J. Mol. Sci. 2019, 20, 1074. [Google Scholar] [CrossRef]
- Liu, F.; Horton-Sparks, K.; Hull, V.; Li, R.W.; Martínez-Cerdeño, V. The valproic acid rat model of autism presents with gut bacterial dysbiosis similar to that in human autism. Mol. Autism 2018, 9, 61. [VSports - Google Scholar] [CrossRef]
- Schiavi, S.; Iezzi, D.; Manduca, A.; Leone, S.; Melancia, F.; Carbone, C.; Petrella, M.; Mannaioni, G.; Masi, A.; Trezza, V. Reward-Related Behavioral, Neurochemical and Electrophysiological Changes in a Rat Model of Autism Based on Prenatal Exposure to Valproic Acid. Front. Cell. Neurosci. 2019, 13, 479. [Google Scholar (V体育官网)] [CrossRef]
- Mehra, S.; Ul Ahsan, A.; Seth, E.; Chopra, M. Critical Evaluation of Valproic Acid-Induced Rodent Models of Autism: Current and Future Perspectives. J. Mol. Neurosci. MN 2022, 72, 1259–1273. [Google Scholar] [CrossRef] [PubMed]
- Bjørk, M.H.; Zoega, H.; Leinonen, M.K.; Cohen, J.M.; Dreier, J.W.; Furu, K.; Gilhus, N.E.; Gissler, M.; Hálfdánarson, Ó.; Igland, J.; et al. Association of Prenatal Exposure to Antiseizure Medication with Risk of Autism and Intellectual Disability. JAMA Neurol. 2022, 79, 672–681. [Google Scholar (VSports app下载)] [CrossRef] [PubMed]
- Guerra, M.; Medici, V.; Weatheritt, R.; Corvino, V.; Palacios, D.; Geloso, M.C.; Farini, D.; Sette, C. Fetal exposure to valproic acid dysregulates the expression of autism-linked genes in the developing cerebellum. Transl. Psychiatry 2023, 13, 114. [Google Scholar] [CrossRef] [PubMed]
- Aishworiya, R.; Valica, T.; Hagerman, R.; Restrepo, B. An Update on Psychopharmacological Treatment of Autism Spectrum Disorder. Neurother. J. Am. Soc. Exp. Neurother. 2022, 19, 248–262. [Google Scholar] [CrossRef] [PubMed]
- McKinnell, Z.E.; Maze, T.; Ramos, A.; Challans, B.; Plakke, B. Valproic acid treated female Long-Evans rats are impaired on attentional set-shifting. Behav. Brain Res. 2021, 397, 112966. [Google Scholar] [CrossRef]
- Kabel, A.M.; Atef, A.; Borg, H.M.; El-Sheikh, A.A.K.; Al Khabbaz, H.J.; Arab, H.H.; Estfanous, R.S. Perindopril/Ambrosin Combination Mitigates Dextran Sulfate Sodium-Induced Colitis in Mice: Crosstalk between Toll-Like Receptor 4, the Pro-Inflammatory Pathways, and SIRT1/PPAR-γ Signaling. Pharmaceuticals 2022, 15, 600. [Google Scholar] [CrossRef]
- Şen, S.; Hacıosmanoğlu, E. Comparing the Neuroprotective Effects of Telmisartan, Perindopril, and Nebivolol Against Lipopolysaccharide-Induced Injury in Neuron-Like Cells. Cureus 2022, 14, e27429. [VSports注册入口 - Google Scholar] [CrossRef]
- Sayed, A.M.; Abdel-Fattah, M.M.; Arab, H.H.; Mohamed, W.R.; Hassanein, E.H.M. Targeting inflammation and redox aberrations by perindopril attenuates methotrexate-induced intestinal injury in rats: Role of TLR4/NF-κB and c-Fos/c-Jun pro-inflammatory pathways and PPAR-γ/SIRT1 cytoprotective signals. Chem. Biol. Interact. 2022, 351, 109732. [Google Scholar] [CrossRef]
- Aljuhani, N.; Ismail, R.S.; El-Awady, M.S.; Hassan, M.H. Modulatory effects of perindopril on cisplatin-induced nephrotoxicity in mice: Implication of inflammatory cytokines and caspase-3 mediated apoptosis. Acta Pharm. 2020, 70, 515–525. [Google Scholar] [CrossRef]
- Banerjee, A.; Engineer, C.T.; Sauls, B.L.; Morales, A.A.; Kilgard, M.P.; Ploski, J.E. Abnormal emotional learning in a rat model of autism exposed to valproic acid in utero. Front. Behav. Neurosci. 2014, 8, 387. [Google Scholar] [CrossRef]
- Alzahrani, Y.M.; Alim ASattar, M.A.; Kamel, F.O.; Ramadan, W.S.; Alzahrani, Y.A. Possible combined effect of perindopril and Azilsartan in an experimental model of dementia in rats. Saudi Pharm. J. SPJ Off. Publ. Saudi Pharm. Soc. 2020, 28, 574–581. [Google Scholar] [CrossRef] [PubMed]
- Mashhoody, T.; Rastegar, K.; Zal, F. Perindopril may improve the hippocampal reduced glutathione content in rats. Adv. Pharm. Bull. 2014, 4, 155–159. [Google Scholar] [CrossRef] [PubMed]
- Elesawy, R.O.; El-Deeb, O.S.; Eltokhy, A.K.; Arakeep, H.M.; Ali, D.A.; Elkholy, S.S.; Kabel, A.M. Postnatal baicalin ameliorates behavioral and neurochemical alterations in valproic acid-induced rodent model of autism: The possible implication of sirtuin-1/mitofusin-2/ Bcl-2 pathway. Biomed. Pharmacother. 2022, 150, 112960. [Google Scholar (V体育安卓版)] [CrossRef]
- Zhou, B.; Zheng, X.; Chen, Y.; Yan, X.; Peng, J.; Liu, Y.; Zhang, Y.; Tang, L.; Wen, M. The Changes of Amygdala Transcriptome in Autism Rat Model After Arginine Vasopressin Treatment. Front. Neurosci. 2022, 16, 838942. [Google Scholar] [CrossRef] [PubMed]
- Kalueff, A.V.; Stewart, A.M.; Song, C.; Berridge, K.C.; Graybiel, A.M.; Fentress, J.C. Neurobiology of rodent self-grooming and its value for translational neuroscience. Nat. Rev. Neuroscience 2016, 17, 45–59. [Google Scholar] [CrossRef]
- Rein, B.; Ma, K.; Yan, Z. A standardized social preference protocol for measuring social deficits in mouse models of autism. Nat. Protoc. 2020, 15, 3464–3477. [Google Scholar] [CrossRef] [PubMed]
- Chaloob, M.K.; Ali, H.H.; Qasim, B.J.; Mohammed, A.S. Immunohistochemical Expression of Ki-67, PCNA and CD34 in Astrocytomas: A Clinicopathological Study. Oman Med. J. 2012, 27, 368–374. [Google Scholar] [CrossRef]
- Lord, C.; Brugha, T.S.; Charman, T.; Cusack, J.; Dumas, G.; Frazier, T.; Jones, E.J.H.; Jones, R.M.; Pickles, A.; State, M.W.; et al. Autism spectrum disorder. Nat. Rev. Dis. Primers 2020, 6, 5. [Google Scholar] [CrossRef]
- Morris, G.; Puri, B.K.; Frye, R.E.; Maes, M. The Putative Role of Environmental Mercury in the Pathogenesis and Pathophysiology of Autism Spectrum Disorders and Subtypes. Mol. Neurobiol. 2018, 55, 4834–4856. ["V体育2025版" Google Scholar] [CrossRef]
- Angrand, L.; Masson, J.D.; Rubio-Casillas, A.; Nosten-Bertrand, M.; Crépeaux, G. Inflammation and Autophagy: A Convergent Point between Autism Spectrum Disorder (ASD)-Related Genetic and Environmental Factors: Focus on Aluminum Adjuvants. Toxics 2022, 10, 518. ["V体育ios版" Google Scholar] [CrossRef]
- Mabunga, D.F.; Gonzales, E.L.; Kim, J.W.; Kim, K.C.; Shin, C.Y. Exploring the Validity of Valproic Acid Animal Model of Autism. Exp. Neurobiol. 2015, 24, 285–300. [Google Scholar (VSports在线直播)] [CrossRef] [PubMed]
- Qi, C.; Chen, A.; Mao, H.; Hu, E.; Ge, J.; Ma, G.; Ren, K.; Xue, Q.; Wang, W.; Wu, S. Excitatory and Inhibitory Synaptic Imbalance Caused by Brain-Derived Neurotrophic Factor Deficits During Development in a Valproic Acid Mouse Model of Autism. Front. Mol. Neurosci. 2022, 15, 860275. [Google Scholar] [CrossRef] [PubMed]
- Jiang, S.; Xiao, L.; Sun, Y.; He, M.; Gao, C.; Zhu, C.; Chang, H.; Ding, J.; Li, W.; Wang, Y.; et al. The GABAB receptor agonist STX209 reverses the autism-like behaviour in an animal model of autism induced by prenatal exposure to valproic acid. Mol. Med. Rep. 2022, 25, 154. [Google Scholar] [CrossRef] [PubMed]
- Reinhardt, V.P.; Iosif, A.M.; Libero, L.; Heath, B.; Rogers, S.J.; Ferrer, E.; Nordahl, C.; Ghetti, S.; Amaral, D.; Solomon, M. Understanding Hippocampal Development in Young Children with Autism Spectrum Disorder. J. Am. Acad. Child Adolesc. Psychiatry 2020, 59, 1069–1079. [Google Scholar] [CrossRef]
- Long, J.; Li, H.; Liu, Y.; Liao, X.; Tang, Z.; Han, K.; Chen, J.; Zhang, H. Insights into the structure and function of the hippocampus: Implications for the pathophysiology and treatment of autism spectrum disorder. Front. Psychiatry 2024, 15, 1364858. [Google Scholar] [CrossRef]
- Banker, S.M.; Gu, X.; Schiller, D.; Foss-Feig, J.H. Hippocampal contributions to social and cognitive deficits in autism spectrum disorder. Trends Neurosci. 2021, 44, 793–807. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Liu, J.; Gong, H.; Liu, T.; Li, X.; Fan, X. Implication of Hippocampal Neurogenesis in Autism Spectrum Disorder: Pathogenesis and Therapeutic Implications. Curr. Neuropharmacol. 2023, 21, 2266–2282. [Google Scholar] [CrossRef]
- Rexrode, L.E.; Hartley, J.; Showmaker, K.C.; Challagundla, L.; Vandewege, M.W.; Martin, B.E.; Blair, E.; Bollavarapu, R.; Antonyraj, R.B.; Hilton, K.; et al. Molecular profiling of the hippocampus of children with autism spectrum disorder. Mol. Psychiatry 2024, 29, 1968–1979. [Google Scholar] [CrossRef]
- Dionísio, A.; Espírito, A.; Pereira, A.C.; Mouga, S.; d’Almeida, O.C.; Oliveira, G.; Castelo-Branco, M. Neurochemical differences in core regions of the autistic brain: A multivoxel 1H-MRS study in children. Sci. Rep. 2024, 14, 2374. [VSports在线直播 - Google Scholar] [CrossRef]
- Elibol, B.; Kilic, U. High Levels of SIRT1 Expression as a Protective Mechanism Against Disease-Related Conditions. Front. Endocrinol. 2018, 9, 614. [Google Scholar] [CrossRef]
- Bu, X.; Wu, D.; Lu, X.; Yang, L.; Xu, X.; Wang, J.; Tang, J. Role of SIRT1/PGC-1α in mitochondrial oxidative stress in autistic spectrum disorder. Neuropsychiatr. Dis. Treat. 2017, 13, 1633–1645. [Google Scholar] [CrossRef] [PubMed]
- Salminen, A.; Kaarniranta, K.; Kauppinen, A. Crosstalk between Oxidative Stress and SIRT1: Impact on the Aging Process. Int. J. Mol. Sci. 2013, 14, 3834–3859. [Google Scholar] [CrossRef]
- Liu, F.J.; Gu, T.J.; Wei, D.Y. Emodin alleviates sepsis-mediated lung injury via inhibition and reduction of NF-kB and HMGB1 pathways mediated by SIRT1. Kaohsiung J. Med. Sci. 2022, 38, 253–260. [Google Scholar] [CrossRef]
- Zhu, Z.; Li, H.; Chen, W.; Cui, Y.; Huang, A.; Qi, X. Perindopril Improves Cardiac Function by Enhancing the Expression of SIRT3 and PGC-1α in a Rat Model of Isoproterenol-Induced Cardiomyopathy. Front. Pharmacol. 2020, 11, 94. [Google Scholar (V体育平台登录)] [CrossRef] [PubMed]
- Al-Harbi, N.O.; Nadeem, A.; Ahmad, S.F.; Al-Ayadhi, L.Y.; Al-Harbi, M.M.; As Sobeai, H.M.; Ibrahim, K.E.; Bakheet, S.A. Elevated expression of toll-like receptor 4 is associated with NADPH oxidase-induced oxidative stress in B cells of children with autism. Int. Immunopharmacol. 2020, 84, 106555. [Google Scholar] [CrossRef] [PubMed]
- Szabó, D.; Tod, P.; Gölöncsér, F.; Román, V.; Lendvai, B.; Otrokocsi, L.; Sperlágh, B. Maternal P2X7 receptor inhibition prevents autism-like phenotype in male mouse offspring through the NLRP3-IL-1β pathway. Brain Behav. Immun. 2022, 101, 318–332. [Google Scholar (VSports注册入口)] [CrossRef]
- Malaguarnera, M.; Khan, H.; Cauli, O. Resveratrol in Autism Spectrum Disorders: Behavioral and Molecular Effects. Antioxidants 2020, 9, 188. [Google Scholar] [CrossRef]
- Shen, Y.; Qian, L.; Luo, H.; Li, X.; Ruan, Y.; Fan, R.; Si, Z.; Chen, Y.; Li, L.; Liu, Y. The Significance of NLRP Inflammasome in Neuropsychiatric Disorders. Brain Sci. 2022, 12, 1057. [Google Scholar] [CrossRef]
- Wong, R.S.Y. Neuroinflammation in autism spectrum disorders: Potential target for mesenchymal stem cell-based therapy. Egypt. J. Neurol. Psychiatry Neurosurg. 2022, 58, 91. [VSports注册入口 - Google Scholar] [CrossRef]
- Ahmad, S.F.; Ansari, M.A.; Nadeem, A.; Alzahrani, M.Z.; Bakheet, S.A.; Attia, S.M. Resveratrol Improves Neuroimmune Dysregulation Through the Inhibition of Neuronal Toll-Like Receptors and COX-2 Signaling in BTBR T+ Itpr3tf/J Mice. Neuromol. Med. 2018, 20, 133–146. [Google Scholar] [CrossRef]
- El-Shoura, E.A.M.; Messiha, B.A.S.; Sharkawi, S.M.Z.; Hemeida, R.A.M. Perindopril ameliorates lipopolysaccharide-induced brain injury through modulation of angiotensin-II/angiotensin-1-7 and related signaling pathways. Eur. J. Pharmacol. 2018, 834, 305–317. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Zhao, D.; Feng, J.; Yang, X.; Lan, Z.; Yang, T.; Kong, X.; Qu, H.; Zhou, H. LuQi Formula Regulates NLRP3 Inflammasome to Relieve Myocardial-Infarction-Induced Cardiac Remodeling in Mice. Evid. Based Complement. Altern. Med. ECAM 2021, 2021, 5518083. [Google Scholar] [CrossRef] [PubMed]
- Valdivia, A.O.; Farr, V.; Bhattacharya, S.K. A novel myelin basic protein transcript variant in the murine central nervous system. Mol. Biol. Rep. 2019, 46, 2547–2553. [Google Scholar] [CrossRef]
- Martinsen, V.; Kursula, P. Multiple sclerosis and myelin basic protein: Insights into protein disorder and disease. Amino Acids 2022, 54, 99–109. [Google Scholar] [CrossRef]
- Graciarena, M.; Seiffe, A.; Nait-Oumesmar, B.; Depino, A.M. Hypomyelination and Oligodendroglial Alterations in a Mouse Model of Autism Spectrum Disorder. Front. Cell. Neurosci. 2019, 12, 517. [VSports注册入口 - Google Scholar] [CrossRef]
- Gonzalez-Gronow, M.; Cuchacovich, M.; Francos, R.; Cuchacovich, S.; Blanco, A.; Sandoval, R.; Gomez, C.F.; Valenzuela, J.A.; Ray, R.; Pizzo, S.V. Catalytic autoantibodies against myelin basic protein (MBP) isolated from serum of autistic children impair in vitro models of synaptic plasticity in rat hippocampus. J. Neuroimmunol. 2015, 287, 1–8. [Google Scholar] [CrossRef]
- Jain, M.; Singh, M.K.; Shyam, H.; Mishra, A.; Kumar, S.; Kumar, A.; Kushwaha, J. Role of JAK/STAT in the Neuroinflammation and its Association with Neurological Disorders. Ann. Neurosci. 2021, 28, 191–200. [Google Scholar] [CrossRef]
- Patel, A.B.; Tsilioni, I.; Leeman, S.E.; Theoharides, T.C. Neurotensin stimulates sortilin and mTOR in human microglia inhibitable by methoxyluteolin, a potential therapeutic target for autism. Proc. Natl. Acad. Sci. USA 2016, 113, E7049–E7058. [Google Scholar] [CrossRef] [PubMed]
- Tufano, M.; Pinna, G. Is There a Future for PPARs in the Treatment of Neuropsychiatric Disorders? Molecules 2020, 25, 1062. ["VSports在线直播" Google Scholar] [CrossRef]
- Panzer, U.; Zahner, G.; Wienberg, U.; Steinmetz, O.M.; Peters, A.; Turner, J.E.; Paust, H.J.; Wolf, G.; Stahl, R.A.; Schneider, A. 15-deoxy-Delta12,14-prostaglandin J2 inhibits INF-gamma-induced JAK/STAT1 signalling pathway activation and IP-10/CXCL10 expression in mesangial cells. Nephrol. Dial. Transplant. Off. Publ. Eur. Dial. Transpl. Assoc. Eur. Ren. Assoc. 2008, 23, 3776–3785. [V体育平台登录 - Google Scholar] [CrossRef]
- El-Shoura, E.A.M.; Sharkawi, S.M.Z.; Messiha, B.A.S.; Bakr, A.G.; Hemeida, R.A.M. Perindopril mitigates LPS-induced cardiopulmonary oxidative and inflammatory damage via inhibition of renin angiotensin system, inflammation and oxidative stress. Immunopharmacol. Immunotoxicol. 2019, 41, 630–643. ["V体育官网" Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Zhang, J.X.; Zhang, Q.L. PI3K/AKT/mTOR-mediated autophagy in the development of autism spectrum disorder. Brain Res. Bull. 2016, 125, 152–158. [VSports app下载 - Google Scholar] [CrossRef] [PubMed]
- Choi, C.S.; Gonzales, E.L.; Kim, K.C.; Yang, S.M.; Kim, J.W.; Mabunga, D.F.; Cheong, J.H.; Han, S.H.; Bahn, G.H.; Shin, C.Y. The transgenerational inheritance of autism-like phenotypes in mice exposed to valproic acid during pregnancy. Sci. Rep. 2016, 6, 36250. [Google Scholar] [CrossRef] [PubMed]
- Zakaria, S.; Allam, S.; El-Sisi, A.E. Perindopril sensitizes hepatocellular carcinoma to chemotherapy: A possible role of leptin/Wnt/β-catenin axis with subsequent inhibition of liver cancer stem cells. Saudi Pharm. J. SPJ Off. Publ. Saudi Pharm. Soc. 2022, 30, 1170–1180. [Google Scholar] [CrossRef]
- Jin, Y.; Choi, J.; Lee, S.; Kim, J.W.; Hong, Y. Pathogenetical and Neurophysiological Features of Patients with Autism Spectrum Disorder: Phenomena and Diagnoses. J. Clin. Med. 2019, 8, 1588. [Google Scholar] [CrossRef]
- Zhao, P.; Fu, H.; Cheng, H.; Zheng, R.; Yuan, D.; Yang, J.; Li, S.; Li, E.; Li, L. Acupuncture at ST36 Alleviates the Behavioral Disorder of Autistic Rats by Inhibiting TXNIP-Mediated Activation of NLRP3. J. Neuropathol. Exp. Neurol. 2022, 81, 127–134. [VSports app下载 - Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Published by MDPI on behalf of the Lithuanian University of Health Sciences. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alnakhli, A.M.; Saleh, A.; Kabel, A.M.; Estfanous, R.S.; Borg, H.M.; Alsufyani, K.M.; Sabry, N.M.; Gomaa, F.A.M.; Abd Elmaaboud, M.A. Perindopril Ameliorates Sodium Valproate-Induced Rat Model of Autism: Involvement of Sirtuin-1, JAK2/STAT3 Axis, PI3K/Akt/GSK-3β Pathway, and PPAR-Gamma Signaling. Medicina 2024, 60, 1802. https://doi.org/10.3390/medicina60111802
Alnakhli AM, Saleh A, Kabel AM, Estfanous RS, Borg HM, Alsufyani KM, Sabry NM, Gomaa FAM, Abd Elmaaboud MA. Perindopril Ameliorates Sodium Valproate-Induced Rat Model of Autism: Involvement of Sirtuin-1, JAK2/STAT3 Axis, PI3K/Akt/GSK-3β Pathway, and PPAR-Gamma Signaling. Medicina. 2024; 60(11):1802. https://doi.org/10.3390/medicina60111802
Chicago/Turabian StyleAlnakhli, Anwar M., Asmaa Saleh, Ahmed M. Kabel, Remon S. Estfanous, Hany M. Borg, Khulud M. Alsufyani, Nesreen M. Sabry, Fatma Alzahraa M. Gomaa, and Maaly A. Abd Elmaaboud. 2024. "Perindopril Ameliorates Sodium Valproate-Induced Rat Model of Autism: Involvement of Sirtuin-1, JAK2/STAT3 Axis, PI3K/Akt/GSK-3β Pathway, and PPAR-Gamma Signaling" Medicina 60, no. 11: 1802. https://doi.org/10.3390/medicina60111802
APA StyleAlnakhli, A. M., Saleh, A., Kabel, A. M., Estfanous, R. S., Borg, H. M., Alsufyani, K. M., Sabry, N. M., Gomaa, F. A. M., & Abd Elmaaboud, M. A. (2024). Perindopril Ameliorates Sodium Valproate-Induced Rat Model of Autism: Involvement of Sirtuin-1, JAK2/STAT3 Axis, PI3K/Akt/GSK-3β Pathway, and PPAR-Gamma Signaling. Medicina, 60(11), 1802. https://doi.org/10.3390/medicina60111802