"VSports最新版本" Norcantharidin Sensitizes Colorectal Cancer Cells to Radiotherapy via Reactive Oxygen Species–DRP1-Mediated Mitochondrial Damage
Norcantharidin (NCTD) enhances colorectal cancer (CRC) cell radiosensitivity in vitro. (A) The chemical structure of NCTD. (B,C) The viability of LoVo and DLD-1 cells treated with NCTD. (D,E) CRC cell viability and IC20 values after 48 h of treatment with different concentrations of NCTD. (F,G) Colony formation assay showing the enhanced radiosensitivity of CRC cells in vitro, as evaluated by the radiation multi-target single-hit model, after NCTD (10 and 50 µM) treatment. (H–K) CRC cells were treated with ionizing radiation (IR, 6 Gy) alone or in combination with NCTD (10 and 50 µM) for cell clone formation, *, p < 0.5.
"> Figure 2NCTD induces DNA damage and mitochondria-dependent apoptosis in CRC cells. (A,B) Fluorescence microscopy images showing increased DNA fracture (ϒ-H2AX, green) after the combination treatment of IR (6 Gy) and NCTD (10 and 50 µM). (C) Representative immunoblotting of DNA damage (ϒ-H2AX) in CRC cells. ****, p < 0.0001. (D) Histogram of intracellular ϒ-H2AX-positive cytometry after IR combined with NCTD treatment. ****, p < 0.0001. (E) Casplab software version 1.2.3 b1 was applied to process and analyze the comet images, and the lengths of the tail moments of the four groups of comets after different interventions were analyzed. ****, p < 0.0001. (F,G) Detection of DNA damage using the comet assay. Scale bar = 100 µm. (H) NCTD increased apoptosis at 48 h post IR in CRC cells. ***, p < 0.001, ****, p < 0.0001 (I) NCTD increased the expression of Cyt C 48 h post IR. (L) Histogram of Cyt C protein expression after different treatments. ****, p < 0.0001. (J,K) Expression of Bcl-xl, Bax, Bim, cleaved caspase-3, and survivin was detected by Western blotting 48 h post IR in CRC cells. *, p < 0.05; **, p < 0.01, ***, p < 0.001, ****, p < 0.0001.
"> Figure 3NCTD induces CRC cell senescence and blocks the cell cycle post IR. LoVo and DLD-1 cells were treated with NCTD for 24 or 48 h. (A–C) NCTD increased the expression of senescence-associated β-galactosidase (SA-β-gal) after IR in CRC cells. **, p < 0.01, ***, p < 0.001, ****, p < 0.0001. Scale bar = 100 µm. (D–F) Western blotting analyses of p21 and p16 in irradiated LoVo and DLD-1 cells. *, p < 0.05; **, p < 0.01. (G,H) The CRC cell cycle was assessed using flow cytometry. (I) Representative immunoblotting of the cell-cycle proteins cyclin B1, CDC2, p-CDC2, CHK2, and p-CHK2. (J). Histogram of p21 and p16 proteins in gray values. *, p < 0.05; **, p < 0.01, ***, p < 0.001, ****, p < 0.0001, ns, p > 0.05.
"> Figure 4Effect of IR combined with NCTD on mitochondrial damage and mitochondrial division in CRC cells. (A) Morphology of mitochondria in CRC cells treated with IR and/or NCTD, as determined by confocal microscopy. Scale bar = 10 µm. (B) JC-1 in CRC cells. Scale bar = 100 µm. (C) Representative Western blot results and the quantification of mitochondrial fusion- and fission-associated proteins. (D) JC-1 fluorescent probe bar chart, ****, p < 0.0001. (E,F) Statistical analysis of the mRNA levels of mitochondrial fission- and fusion-associated proteins in CRC cells. *, p < 0.05, **, p < 0.01, ****, p < 0.0001. (G,H) Representative confocal images showing DRP1 immunofluorescence and mitochondria stained with MitoTracker®. Nuclei were stained with DAPI. Scale bar = 10 µm. (I,J) The quantification of mitochondrial fusion- and fission-associated proteins. *, p < 0.05, **, p < 0.01; ***, p < 0.001, ****, p < 0.0001, ns, p > 0.05.
"> Figure 5NCTD increased CRC cell apoptosis by upregulating ROS levels. (A−D) Combination therapy increased intracellular and mitochondrial ROS levels. *, p < 0.05, ****, p < 0.0001. (E) Images of clone formation in the groups after the addition of NAC. *, p < 0.05; **, p < 0.01, ****, p < 0.0001. (F,G) NAC decreased intracellular ROS levels in CRC cells. **, p < 0.01, ***, p < 0.01, ****, p < 0.0001. (H−J) NAC also inhibited ROS generation in mitochondria. ****, p < 0.0001. (K,L) Detection of apoptosis by flow cytometry after Annexin V–propidium iodide (PI) staining. (M,N) Annexin V−PI staining histograms. ***, p < 0.01, ****, p < 0.0001. (O,P) Representative immunoblotting of related apoptosis proteins and statistical histograms. *, p < 0.05; **, p < 0.01, ***, p < 0.01, ****, p < 0.0001.
"> Figure 6Reactive oxygen species (ROS) lead to excessive mitochondrial division by increasing mitochondrial damage in CRC cells. (A,B) Mitochondrial membrane potential in CRC cells. **** p < 0.0001. (C) Mitochondrial morphology, as observed using confocal microscopy. NAC reverses mitochondrial fragmentation caused by combination therapy. Scale bar = 10 µm. (D) Representative immunoblotting of mitochondrial fusion− and fission−associated proteins after NAC treatment in CRC cells. (E,F) Immunofluorescence of DRP1 and mitochondria after NAC treatment in CRC cells. Scale bar = 10 µm. (G) Statistical bar graph of mitochondrial division and fusion. *, p < 0.05; **, p < 0.01, ***, p < 0.001, ****, p < 0.0001, ns > 0.05.
"> Figure 7Mdivi-1 rescues mitochondria-dependent apoptosis and decreases ROS. (A,B) Immunofluorescence of DRP1 and mitochondria after Mdivi-1 (5 µmol/L) treatment in CRC cells. Scale bar = 10 µm. (C) Representative immunoblotting of mitochondrial fusion- and fission-associated proteins after Mdivi-1 treatment in CRC cells. (D,E) Statistical histogram of the relative expression of proteins associated with mitochondrial division and fusion after pretreatment with Mdivi-1. *, p < 0.05; **, p < 0.01, ***, p < 0.001. (F) Changes in cell viability after treatment with Mdivi-1 in CRC cells. *, p < 0.05; **, p < 0.01, ***, p < 0.001. (G) Apoptosis rate of CRC cells after Mdivi-1 treatment. ***, p < 0.001, ****, p < 0.0001. (H) Western blotting for Bax, Bim, Bcl-xl, survivin, cleaved caspase-3, and Cyt-C expression in CRC cells. (I,J) Histogram of relative expression of apoptotic proteins after Mdivi-1 pretreatment. *, p < 0.05; **, p < 0.01, ***, p < 0.001, **** p < 0.0001. (K) Changes in ROS after Mdivi-1 treatment in CRC cells. *, p < 0.05; **, p < 0.01, ***, p < 0.001.
"> Figure 8NCTD enhances CRC cell radiosensitivity in vivo. (A–E) Tumor growth curves and images of tumors in each group (n = 6 and 4 tumors were observed) ( ***, p < 0.001, **** p < 0.0001). (F) Body weight of mice in each group. (G) Quality of tumors in each group (*** p < 0.001). (H) Detection of apoptosis in mouse tumor tissues by TUNEL staining. (I,K) Immunohistochemical staining to test the expression of Ki67, cleaved caspase-3, γ-H2AX, and 8-OHDG in tumor sections from all study groups, ***, p < 0.001, **** p < 0.0001. (J) Hematoxylin and eosin staining of tumor sections from all groups to detect the effects of NCTD on the liver, lungs, and kidneys of mice.
"> Figure 9Mechanism of action of NCTD in increasing sensitivity to radiotherapy in colorectal cancer.
">
Abstract
Norcantharidin (NCTD), a cantharidin derivative, induces ROS generation and is widely used to treat CRC. In this study, we clarified the role and mechanism of action of norcantharidin in increasing CRC sensitivity to radiotherapy. We treated the CRC cell lines LoVo and DLD-1 with NCTD (10 or 50 μmol/L), ionizing radiation (IR, 6 Gy), and a combination of the two and found that NCTD significantly inhibited the proliferation of CRC cells and enhanced their sensitivity to radiotherapy. NCTD induced ROS generation by decreasing the mitochondrial membrane potential, increasing mitochondrial membrane permeability, and promoting cytochrome C release from mitochondria into the cytoplasm. IR combined with NCTD induced ROS production, which activated the mitochondrial fission protein DRP1, leading to increased mitochondrial fission and CRC sensitivity to radiotherapy. NCTD also reduced CRC cell resistance to radiotherapy by blocking the cell cycle at the G2/M phase and decreasing p-CHK2, cyclin B1, and p-CDC2 expression. NCTD and IR also inhibited radiation resistance by causing DNA damage. Our findings provide evidence for the potential therapeutic use of NCTD and IR against CRC. Moreover, this study elucidates whether NCTD can overcome CRC radiation tolerance and provides insights into the underlying mechanisms. Keywords: ROS; NCTD; colorectal cancer; mitochondria; DRP1 V体育官网入口.V体育ios版 - 1. Introduction
2. Materials and Methods
2.1. Cell Culture
2.2. Cell Irradiation and Treatment
"V体育ios版" 2.3. Cell Viability Assays
2.4. Single-Cell Gel Electrophoresis Assay
2.5. Flow Cytometric Analysis
2.6. Western Blot Analysis (V体育安卓版)
"V体育2025版" 2.7. Detection of ROS
2.8. MitoTracker® Red CMXRos (VSports在线直播)
2.9. Colony Formation Assay
2.10. Immunocytofluorescence Assay
2.11. Measurement of Mitochondrial Membrane Potential (JC-1 Fluorescent Probe Experiment)
2.12. RNA Isolation and Quantitative Real-Time PCR
2.13. Hematoxylin and Eosin Staining and Immunohistochemistry Assay
2.14. Animals
2.15. TUNEL Assay
2.16. Statistical Analyses
3. Results
3.1. NCTD Inhibits the Proliferation of CRC Cells and Enhances Their Radiosensitivity In Vitro
3.2. NCTD Induces DNA Damage and Mitochondria-Dependent Apoptosis in CRC Cells (VSports最新版本)
VSports最新版本 - 3.3. NCTD Induces CRC Cell Senescence and Blocks the Cell Cycle
"V体育ios版" 3.4. NCTD Combined with IR Impairs Mitochondrial Morphology and Function, Leading to Increased Mitochondrial Division
3.5. NCTD Increased CRC Cell Apoptosis via Upregulating ROS Levels
3.6. ROS Lead to Excessive Mitochondrial Division by Increasing Mitochondrial Damage in CRC Cells (VSports最新版本)
3.7. DRP1 Mediates IR/NCTD-Induced Mitochondrial Division and Inhibition of DRP1 Expression Rescues Mitochondria-Dependent Apoptosis and Decreases ROS
"VSports在线直播" 3.8. NCTD Increased the Radiosensitivity of CRC Cells In Vivo
4. Discussion
5. Conclusions
Supplementary Materials
"VSports手机版" Author Contributions
"V体育安卓版" Funding
"VSports app下载" Institutional Review Board Statement
"VSports手机版" Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
NCTD | Norcantharidin |
RT | Radiotherapy |
ROS | Reactive oxygen species |
CRC | Colorectal cancer |
IR | Ionizing radiation |
DRP1 | Dynamin-related protein 1 |
MMP | Mitochondrial membrane potential |
AOD | Average optical density |
IOD | Integrated optical density |
IHC | Immunohistochemistry |
SER | Sensitization enhancement ratio |
Apaf-1 | Apoptotic protease activator |
SA-β-gal | Senescence-associated β-galactosidase activity |
Cyt C | Cytochrome C |
CHK2 | Checkpoint kinase 2 |
NCCN | National Comprehensive Cancer Network |
V体育平台登录 - References
- Siegel, R.L.; Miller, K.D.; Wagle, N.S.; Jemal, A. Cancer statistics, 2023. CA Cancer J. Clin. 2023, 73, 17–48. [Google Scholar] [CrossRef] [PubMed]
- Xia, C.; Dong, X.; Li, H.; Cao, M.; Sun, D.; He, S.; Yang, F.; Yan, X.; Zhang, S.; Li, N.; et al. Cancer statistics in China and United States, 2022: Profiles, trends, and determinants. Chin. Med. J. 2022, 135, 584–590. [Google Scholar] [CrossRef]
- Petrelli, F.; Trevisan, F.; Cabiddu, M.; Sgroi, G.; Bruschieri, L.; Rausa, E.; Ghidini, M.; Turati, L. Total neoadjuvant therapy in rectal cancer: A systematic review and meta-analysis of treatment outcomes. Ann. Surg. 2020, 271, 440–448. [Google Scholar] [CrossRef] [PubMed]
- Gorrini, C.; Harris, I.S.; Mak, T.W. Modulation of oxidative stress as an anticancer strategy. Nat. Rev. Drug Discov. 2013, 12, 931–947. ["V体育官网" Google Scholar] [CrossRef]
- Chen, Y.; Li, Y.; Huang, L.; Du, Y.; Gan, F.; Li, Y. Antioxidative Stress: Inhibiting Reactive Oxygen Species Production as a Cause of Radioresistance and Chemoresistance. Oxid. Med. Cell Longev. 2021, 66, 20306. [V体育官网 - Google Scholar] [CrossRef] [PubMed]
- Nguyen, L.; Dobiasch, S.; Schneider, G.; Schmid, R.M.; Azimzadeh, O.; Kanev, K. Impact of DNA repair and reactive oxygen species levels on radioresistance in pancreatic cancer. Radiother. Oncol. 2021, 159, 265–276. ["VSports最新版本" Google Scholar] [CrossRef]
- Hayes, J.D.; Dinkova-Kostova, A.T.; Tew, K.D. Oxidative Stress in Cancer. Cancer Cell 2020, 38, 167–197. [Google Scholar] [CrossRef]
- Yoshida, T.; Goto, S.; Kawakatsu, M.; Urata, Y.; Li, T.S. Mitochondrial dysfunction, a probable cause of persistent oxidative stress after exposure to ionizing radiation. Free Radic. Res. 2012, 46, 147–153. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, L.; Pazhanisamy, S.K.; Li, H.; Meng, A.; Zhou, D. Total body irradiation causes residual bone marrow injury by induction of persistent oxidative stress in murine hematopoietic stem cells. Free Radic. Biol. Med. 2010, 48, 348–356. [Google Scholar] [CrossRef]
- Zou, Z.; Chang, H.; Li, H.; Wang, S. Induction of reactive oxygen species: An emerging approach for cancer therapy. Apoptosis 2017, 22, 1321–1335. [Google Scholar] [CrossRef]
- McCann, E.; O’Sullivan, J.; Marcone, S. Targeting cancer-cell mitochondria and metabolism to improve radiotherapy response. Transl. Oncol. 2021, 14, 100905. ["V体育官网入口" Google Scholar] [CrossRef]
- Kawamura, K.; Qi, F.; Kobayashi, J. Potential relationship between the biological effects of low-dose irradiation and mitochondrial ROS production. J. Radiat. Res. 2018, 59, i91–i97. [Google Scholar] [CrossRef]
- Wang, Y.; Kong, L.; Wu, T.; Tang, M. Urban particulate matter disturbs the equilibrium of mitochondrial dynamics and biogenesis in human vascular endothelial cells. Environ. Pollut. 2020, 264, 114639. [V体育2025版 - Google Scholar] [CrossRef]
- Jiang, J.; Liang, S.; Zhang, J.; Du, Z.; Xu, Q.; Duan, J.; Sun, Z. Melatonin ameliorates PM2.5-induced cardiac perivascular fibrosis through regulating mitochondrial redox homeostasis. J. Pineal. Res. 2021, 70, e12686. ["VSports注册入口" Google Scholar] [CrossRef] [PubMed]
- Wu, D.; Lu, J.; Ma, Y.; Cao, Y.; Zhang, T. Mitochondrial dynamics and mitophagy involved in MPA-capped CdTe quantum dots-induced toxicity in the human liver carcinoma (HepG2) cell line. Environ. Pollut. 2021, 274, 115681. [VSports app下载 - Google Scholar] [CrossRef] [PubMed]
- Suen, D.F.; Norris, K.L.; Youle, R.J. Mitochondrial dynamics and apoptosis. Gene Dev. 2008, 22, 1577–1590. ["VSports app下载" Google Scholar] [CrossRef] [PubMed]
- Zhou, J.; Ren, Y.; Tan, L.; Song, X.; Wang, M.; Li, Y.; Cao, Z.; Guo, C. Norcantharidin: Research advances in pharmaceutical activities and derivatives in recent years. Biomed. Pharmacother. 2020, 131, 110755. [Google Scholar] [CrossRef] [PubMed]
- Shen, B.; He, P.J.; Shao, C.L. Norcantharidin induced DU145 cell apoptosis through ROS-mediated mitochondrial dysfunction and energy depletion. PLoS ONE 2013, 8, e84610. [Google Scholar] [CrossRef] [PubMed]
- Lin, C.L.; Chen, C.M.; Lin, C.L.; Cheng, C.W.; Lee, C.H.; Hsieh, Y.H. Norcantharidin induces mitochondrial-dependent apoptosis through Mcl-1 inhibition in human prostate cancer cells. Biochim. Biophys. Acta Mol. Cell Res. 2017, 1864, 1867–1876. [Google Scholar] [CrossRef] [PubMed]
- Zheng, L.-C.; Yang, M.-D.; Kuo, C.-L.; Lin, C.-H.; Fan, M.-J.; Chou, Y.-C.; Lu, H.-F.; Huang, W.-W.; Peng, S.-F.; Chung, J.-G. Norcantharidin-induced apoptosis of AGS human gastric cancer cells through reactive oxygen species production, and caspase- and mitochondria-dependent signaling pathways. Anticancer Res. 2016, 36, 6031–6042. [Google Scholar] [CrossRef]
- Qin, H.; Zhang, H.; Zhang, X.; Zhang, S.; Zhu, S.; Wang, H. Resveratrol protects intestinal epithelial cells against radiation-induced damage by promoting autophagy and inhibiting apoptosis through SIRT1 activation. J. Radiat. Res. 2021, 62, 574–581. [Google Scholar] [CrossRef]
- Kitamura, S.; Yanagi, T.; Imafuku, K.; Hata, H.; Abe, R.; Shimizu, H. Drp1 regulates mitochondrial morphology and cell proliferation in cutaneous squamous cell carcinoma. J. Derrmatol. Sci. 2017, 88, 298–307. [VSports最新版本 - Google Scholar] [CrossRef]
- Bleazard, W.; McCaffery, J.M.; King, E.J.; Bale, S.; Mozdy, A.; Tieu, Q.; Nunnari, J.; Shaw, J.M. The dynamin-related GTPase Dnm1 regulates mitochondrial fission in yeast. Nat. Cell Biol. 1999, 1, 298–304. [Google Scholar] [CrossRef] [PubMed]
- Labrousse, A.M.; Zappaterra, M.D.; Rube, D.A.; van der Bliek, A.M.C. Elegans dynamin-related protein DRP-1 controls severing of the mitochondrial outer membrane. Mol. Cell 1999, 4, 815–826. [Google Scholar] [CrossRef] [PubMed]
- Tsushima, K.; Bugger, H.; Wende, A.R.; Soto, J.; Jenson, G.A.; Tor, A.R.; McGlauflin, R.; Kenny, H.C.; Zhang, Y.; Souvenir, R.; et al. Mitochondrial reactive oxygen species in lipotoxic hearts induce post-translational modifications of AKAP121, DRP1, and OPA1 that promote mitochondrial fission. Circ. Res. 2018, 122, 58–73. [Google Scholar] [CrossRef] [PubMed]
- Yan, T.; Zhao, Y. Acetaldehyde induces phosphorylation of dynamin-related protein 1 and mitochondrial dysfunction via elevating intracellular ROS and Ca2+ levels. Redox Biol. 2020, 28, 101381. [Google Scholar] [CrossRef] [PubMed]
- Brooks, C.; Wei, Q.; Feng, L.; Dong, G.; Tao, Y.; Mei, L.; Xie, Z.-J.; Dong, Z. Bak regulates mitochondrial morphology and pathology during apoptosis by interacting with mitofusins. Proc. Natl. Acad. Sci. USA 2007, 104, 11649–11654. [Google Scholar] [CrossRef] [PubMed]
- Frank, S.; Gaume, B.; Bergmann-Leitner, E.S.; Leitner, W.W.; Robert, E.G.; Catez, F.; Smith, C.L.; Youle, R.J. The role of dynamin-related protein 1, a mediator of mitochondrial fission, in apoptosis. Dev. Cell 2001, 1, 515–525. [Google Scholar] [CrossRef]
- Germain, M.; Mathai, J.P.; McBride, H.M.; Shore, G.C. Endoplasmic reticulum BIK initiates DRP1-regulated remodelling of mitochondrial cristae during apoptosis. Embo J. 2005, 24, 1546–1556. [Google Scholar] [CrossRef]
- Ludmir, E.B.; Palta, M.; Willett, C.G.; Czito, B.G. Total neoadjuvant therapy for rectal cancer: An emerging option. Cancer 2017, 123, 1497–1506. [Google Scholar (VSports app下载)] [CrossRef]
- Sauer, R.; Liersch, T.; Merkel, S.; Fietkau, R.; Hohenberger, W.; Hess, C.; Becker, H.; Raab, H.-R.; Villanueva, M.-T.; Witzigmann, H.; et al. Preoperative versus postoperative chemoradiotherapy for locally advanced rectal cancer: Results of the German CAO/ARO/AIO-94 randomized phase III trial after a median follow-up of 11 years. J. Clin. Oncol. 2012, 30, 1926–1933. [Google Scholar] [CrossRef] [PubMed]
- Li, X.-P.; Jing, W.; Sun, J.-J.; Liu, Z.-Y.; Zhang, J.-T.; Sun, W.; Zhu, W.; Fan, Y.-Z. A potential small-molecule synthetic antilymphangiogenic agent norcantharidin inhibits tumor growth and lymphangiogenesis of human colonic adenocarcinomas through blocking VEGF-A,-C,-D/VEGFR-2,-3 “multi-points priming” mechanisms in vitro and in vivo. BMC Cancer 2015, 15, 527. [Google Scholar] [CrossRef][Green Version]
- Qiu, P.; Wang, S.; Liu, M.; Ma, H.; Zeng, X.; Zhang, M.; Xu, L.; Cui, Y.; Xu, H.; Tang, Y.; et al. Norcantharidin Inhibits cell growth by suppressing the expression and phosphorylation of both EGFR and c-Met in human colon cancer cells. BMC Cancer 2017, 17, 55. [Google Scholar] [CrossRef] [PubMed]
- Peng, C.; Li, Z.; Niu, Z.; Niu, W.; Xu, Z.; Gao, H.; Niu, W.; Wang, J.; He, Z.; Gao, C.; et al. Norcantharidin Suppresses Colon Cancer Cell Epithelial-Mesenchymal Transition by Inhibiting the αvβ6-ERK-Ets1 Signaling Pathway. Sci. Rep. 2016, 6, 20500. [Google Scholar] [CrossRef]
- Hanley, R.; Pagliari, F.; Garcia-Calderón, D.; Guerreiro, J.F.; Genard, G.; Jansen, J.; Nisticò, C.; Marafioti, M.G.; Tirinato, L.; Seco, J. Radio-resistance of hypoxic tumors: Exploring the effects of oxygen and x-ray radiation on non-small lung cancer cell lines. Radiat. Oncol. 2023, 18, 81. ["VSports最新版本" Google Scholar] [CrossRef]
- Patel, P.; Sun, L.; Robbins, Y.; Clavijo, P.E.; Friedman, J.; Silvin, C.; Van Waes, C.; Cook, J.; Mitchell, J.; Allen, C. Enhancing direct cytotoxicity and response to immune checkpoint blockade following ionizing radiation with Wee1 kinase inhibition. Oncoimmunology 2019, 8, e1638207. [Google Scholar] [CrossRef] [PubMed]
- Sun, S.Y. N-acetylcysteine, reactive oxygen species and beyond. Cancer Biol. Ther. 2010, 9, 109–110. [Google Scholar] [CrossRef]
- Wasiak, S.; Zunino, R.; McBride, H.M. Bax/Bak promote sumoylation of DRP1 and its stable association with mitochondria during apoptotic cell death. J. Cell Biol. 2007, 177, 439–450. [Google Scholar] [CrossRef]
- Prudent, J.; Zunino, R.; Sugiura, A.; Mattie, S.; Shore, G.C.; McBride, H.M. MAPL SUMOylation of Drp1 stabilizes an ER/mitochondrial platform required for cell death. Mol. Cell 2015, 59, 941–955. [Google Scholar] [CrossRef]
- Ishihara, N.; Nomura, M.; Jofuku, A.; Kato, H.; Suzuki, S.O.; Masuda, K.; Otera, H.; Nakanishi, Y.; Nonaka, I.; Goto, Y.-I.; et al. Mitochondrial fission factor Drp1 is essential for embryonic development and synapse formation in mice. Nat. Cell Biol. 2009, 11, 958–966. [Google Scholar] [CrossRef]
- Lee, Y.J.; Jeong, S.Y.; Karbowski, M.; Smith, C.L.; Youle, R.J. Roles of the mammalian mitochondrial fission and fusion mediators Fis1, Drp1, and Opa1 in apoptosis. Mol. Biol. Cell 2004, 15, 5001–5011. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, Q.; Zhang, H.; Qin, H.; Wang, H.; Wang, H. Norcantharidin Sensitizes Colorectal Cancer Cells to Radiotherapy via Reactive Oxygen Species–DRP1-Mediated Mitochondrial Damage. Antioxidants 2024, 13, 347. https://doi.org/10.3390/antiox13030347
Xu Q, Zhang H, Qin H, Wang H, Wang H. Norcantharidin Sensitizes Colorectal Cancer Cells to Radiotherapy via Reactive Oxygen Species–DRP1-Mediated Mitochondrial Damage. Antioxidants. 2024; 13(3):347. https://doi.org/10.3390/antiox13030347
Chicago/Turabian StyleXu, Qiong, Heng Zhang, Haoren Qin, Huaqing Wang, and Hui Wang. 2024. "Norcantharidin Sensitizes Colorectal Cancer Cells to Radiotherapy via Reactive Oxygen Species–DRP1-Mediated Mitochondrial Damage" Antioxidants 13, no. 3: 347. https://doi.org/10.3390/antiox13030347
APA StyleXu, Q., Zhang, H., Qin, H., Wang, H., & Wang, H. (2024). Norcantharidin Sensitizes Colorectal Cancer Cells to Radiotherapy via Reactive Oxygen Species–DRP1-Mediated Mitochondrial Damage. Antioxidants, 13(3), 347. https://doi.org/10.3390/antiox13030347