Skip to main content
Mediators of Inflammation logoLink to Mediators of Inflammation
editorial
. 2017 Jan 29;2017:7083153. doi: 10.1155/2017/7083153

CD4+ T Helper Cell Plasticity in Infection, Inflammation, and Autoimmunity (V体育ios版)

"V体育2025版" Samuel Huber 1,*, "V体育平台登录" Nicola Gagliani 1,2, William O'Connor Jr 3, Jens Geginat 4, Flavio Caprioli 5
PMCID: PMC5303579  PMID: 28250577

CD4 T helper (TH) cells orchestrate the immune response and play a pivotal role in infection, inflammation, and autoimmunity. CD4 TH cells can be subdivided into different subsets, which are defined based on a specific network of transcriptional regulators and unique cytokine profiles. This model despite its limitation has proven to be useful to understand the complexity of the immune system and its relationship to different types of immune mediated inflammatory diseases. Interestingly recent findings indicate that some TH cell subsets have a certain degree of plasticity. They can share characteristics typical of other types of TH cells and potentially lose their original features to convert into another TH cell subset. This has been shown for all known TH cell subset but best studied for TH17 cells [1, 2] V体育平台登录. Thus TH17 cells have the capacity to acquire a TH1 phenotype under chronic inflammation [3, 4] but can also convert to regulatory T cells [5–9] and participate in the resolution of the immune response [5, 7–9].

These basic aspects of TH cell lineages and plasticity are discussed by J. E. Belizário et al. who focused on thymic and postthymic regulation of naïve CD4+ T cell lineage fates in humans and mouse models. Furthermore M. L VSports注册入口. Diller et al. described the link between TH17 and regulatory T cells highlighting the mechanisms driving TH17 cells plasticity and discussed the biologic consequences of their unique relationship.

T helper cell plasticity seems to play a key role in amplitude of diseases. Accordingly L. Barbarash et al V体育官网入口. analyzed T cell response in patients with implanted biological and mechanical prosthetic heart valves. Their findings suggest that altered composition of T cell subsets correlates with the development of xenograft rejection. Furthermore A. Ni et al. studied TH17 cell response following motor nerve injury in mice. They found that motor nerve injury exacerbates TH17 cell responses, which may contribute to the development of amyotrophic lateral sclerosis. J. Ruhnau et al. reported reduced numbers and impaired function of regulatory T cells in peripheral blood of ischemic stroke patients. C. F. Krebs and O. M. Steinmetz review the role of CD4+ T cell fate in glomerulonephritis. Interestingly, TH17 cells seem to have a relatively stable phenotype and regulatory T cells show heterogeneity rather than plasticity during glomerulonephritis. These findings suggest that the environment plays a key role during T helper cell plasticity.

In conclusion, we hypothesize that the study of TH cell plasticity could pave the way for future therapies aiming to steer an immune response towards the desired outcome VSports在线直播. However, it is unclear at which stage of maturation TH cells will lose their potential plasticity and if T cell plasticity plays an essential role during physiological immune responses or whether it is merely a tolerable “mistake” which does not provide any physiological advantage. If this latter point would turn out to be true, this will not exclude the possibility of reprogramming the immune system but this reprogramming will probably lead to more side effects.

Nevertheless, it is now obvious that we have to enlarge the original frame of the monolithic model of T helper cell subsets in order to fully comprehend the biology of CD4 T cells. Establishing a simplified model, which integrates the original knowledge and the new findings regarding plasticity, will help to predict T helper cell behavior and it will be essential to overcome the current boundaries limiting the potential clinical applications of this knowledge V体育2025版.

Samuel Huber Nicola Gagliani William O'Connor Jr. Jens Geginat Flavio Caprioli VSports.

References

  • 1.Geginat J., Paroni M., Kastirr I., Larghi P., Pagani M., Abrignani S. Reverse plasticity: TGF-β and IL-6 induce Th1-to-Th17-cell transdifferentiation in the gut. European Journal of Immunology. 2016;46(10):2306–2310. doi: 10.1002/eji.201646618. [DOI] [PubMed] [Google Scholar]
  • 2.Geginat J., Paroni M., Maglie S., et al. Plasticity of human CD4 T cell subsets. Frontiers in Immunology. 2014;5, article 630 doi: 10.3389/fimmu.2014.00630. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 3.Hirota K., Duarte J. H., Veldhoen M., et al. Fate mapping of IL-17-producing T cells in inflammatory responses. Nature Immunology. 2011;12(3):255–263. doi: 10.1038/ni.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 4.Harbour S. N., Maynard C. L., Zindl C. L., Schoeb T. R., Weaver C. T. Th17 cells give rise to Th1 cells that are required for the pathogenesis of colitis. Proceedings of the National Academy of Sciences of the United States of America. 2015;112(22):7061–7066. doi: 10.1073/pnas.1415675112. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 5.Gagliani N., Vesely M. C. A., Iseppon A., et al. TH17 cells transdifferentiate into regulatory T cells uring resolution of inflammation. Nature. 2015;523(7559):221–225. doi: 10.1038/nature14452. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 6.Zielinski C. E., Mele F., Aschenbrenner D., et al. Pathogen-induced human TH17 cells produce IFN-γ or IL-10 and are regulated by IL-1β. Nature. 2012;484(7395):514–518. doi: 10.1038/nature10957. [DOI] [PubMed] [Google Scholar]
  • 7.Obermajer N., Popp F. C., Soeder Y., et al. Conversion of Th17 into IL-17Aneg regulatory T cells: a novel mechanism in prolonged allograft survival promoted by mesenchymal stem cell—supported minimized immunosuppressive therapy. Journal of Immunology. 2014;193(10):4988–4999. doi: 10.4049/jimmunol.1401776. [DOI] [PubMed] [Google Scholar]
  • 8.Heinemann C., Heink S., Petermann F., et al. IL-27 and IL-12 oppose pro-inflammatory IL-23 in CD4+ T cells by inducing Blimp1. Nature Communications. 2014;5, article 3770 doi: 10.1038/ncomms4770. [V体育ios版 - DOI] [PubMed] [Google Scholar]
  • 9.Basu R., Whitley S. K., Bhaumik S., et al. IL-1 signaling modulates activation of STAT transcription factors to antagonize retinoic acid signaling and control the TH17 cell–iTreg cell balance. Nature Immunology. 2015;16(3):286–295. doi: 10.1038/ni.3099. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Mediators of Inflammation are provided here courtesy of Wiley

RESOURCES