Effects of Different Feeding Methods on the Structure, Metabolism, and Gas Production of Infant and Toddler Intestinal Flora and Their Mechanisms
Comparison of fecal bacteria structure among infants and toddlers fed differently and at different ages (BF, breastfeeding; MF, mixed feeding).
"> Figure 2Comparison of in vitro simulated fermentation gas production by fecal bacteria in infants and toddlers fed differently and at different growth stages. Data were expressed as the mean ± SEM.
"> Figure 3Cluster heat map analysis of fecal samples based on gas and ammonia production (A): the cluster (A) and constellation (B) diagram of gas production; the cluster diagram of ammonia production (C).
"> Figure 4Analysis of differences in gas production between feeding methods and genus differences ((A) heat map, (B) Boxplot, (C) PCA, (D) PC analyses).
"> Figure 4 Cont.Analysis of differences in gas production between feeding methods and genus differences ((A) heat map, (B) Boxplot, (C) PCA, (D) PC analyses).
"> Figure 5Analysis of structural metagenomic differences in fecal bacteria in different gas production media. Each infant fecal bacteria were cultured in medium with two different carbon sources (2′-FL and FOS).
"> Figure 6Effect of different carbon sources on the proliferation (A) and gas production of different bacteria (B). Both bacterial proliferation (OD value) and the pressure value were expressed as the mean ± SEM. Differences are considered significant at p < 0.05 (*), p < 0.01 (**) and p < 0.0001 (****).
"> Figure 7Analysis of the types of in vitro fermentation gases produced by different bacterial strains. The production of CO2, H2, and H2S were expressed as the mean ± SEM. Differences are considered significant at p < 0.05 (*), p < 0.001 (***), and p < 0.0001 (****).
"> Figure 8Analysis of the effects of 2′-FL on Klebsiella pneumoniae and Clostridium perfringens adhesion to organoids in fluorescence detection images (A) and qFISH (B). The scale bar is 50 μm. Data were expressed as the mean ± SEM.
"> Figure 8 Cont.Analysis of the effects of 2′-FL on Klebsiella pneumoniae and Clostridium perfringens adhesion to organoids in fluorescence detection images (A) and qFISH (B). The scale bar is 50 μm. Data were expressed as the mean ± SEM.
"> Figure 9Effect of 2′-FL on the signaling pathways of Klebsiella pneumoniae (A) and Clostridium perfringens (B) after organoid infection.
">
Abstract
: In this study, we evaluated the effects of different feeding methods on the characteristics of intestinal flora and gas production in infants and toddlers by using an in vitro simulated intestinal microecology fermentation and organoid model. We found that the feeding method influences intestinal gas and fecal ammonia production in infants and toddlers V体育官网入口. Supplementation with milk powder for infants in the late lactation period could promote the proliferation of beneficial bacteria, including Bifidobacteria. Intestinal flora gas production in a culture medium supplemented with fucosyllactose (2′-FL) was significantly lower than that in media containing other carbon sources. In conclusion, 2′-FL may reduce gas production in infant and toddler guts through two mechanisms: first, it cannot be used by harmful intestinal bacteria to produce gas; second, it can inhibit intestinal mucosa colonization by harmful bacteria by regulating the expression of intestinal epithelial pathogenic genes/signaling pathways, thus reducing the proliferation of gas-producing harmful bacteria in the gut. Keywords: gas production; fucosyllactose; prebiotics .1. Introduction
2. Materials and Methods
2.1. Collection and Treatment of Fecal Samples
2.2. In Vitro Fermentation Method
2.3. DNA Extraction
2.4. Short-Chain Fatty Acid Analysis
2.5. 16s rRNA Gene Sequencing
2.6. Metagenomic Measurements
2.7. Metagenome Bioinformatics Analysis
2.8. Bacterial Isolation and In Vitro Fermentation
2.9. Determination of Gas Pressure and Composition
2.10. FITC-2′-FL Preparation
2.11. Bacteria-Organoid Interaction Experiments
2.11.1. Bacterial Culture and Quantification
2.11.2. Conversion of Intestinal Mucosal Organoids into 2D Cells
2.11.3. Bacterial Adhesion Experiments
2.11.4. Bacterial DNA Extraction
2.11.5. Cell Slide
2.11.6. Fluorescence In Situ Hybrid (FISH) Staining of Bacteria
2.11.7. FITC-2′-FL Localization
2.12. Transcriptome Sequencing and Bioinformatics Analysis
2.13. Statistical Analysis
3. Results
3.1. Analysis of Differences in the Intestinal Flora Structure of Infants and Toddlers Fed Differently and at Different Ages
3.2. Comparison of In Vitro Simulated Fermentation Gas Production by Fecal Bacteria in Infants and Toddlers Fed Differently and at Different Growth Stages
3.3. Comparison of In Vitro Simulated Fermentation of Fecal Ammonia Levels in Infants and Toddlers Fed Differently and at Different Growth Stages
3.4. Comparison of In Vitro Simulated Fermentation of Short-Chain Fatty Acid (SCFA) Production by Fecal Bacteria in Infants and Toddlers Fed Differently and at Different Growth Stages
3.5. Analysis of the Correlation between Differences in Gas Production by Feeding Method and Differences in Bacterial Genus
3.6. Analysis of Structural and Functional Genetic Differences in Bacterial Populations in Different Gas-Producing Media
3.7. Analysis of Structural and Functional Genetic Differences in the Microflora in Different Gas-Producing Media
3.8. Effect of 2′-FL on Adherence and Expression of Genes Associated with K. pneumoniae and C. perfringens Adhesion to Organoids
4. Discussion
Supplementary Materials
Author Contributions (V体育2025版)
Funding
Institutional Review Board Statement
"V体育官网入口" Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Li, R.; Li, Y.; Li, C.; Zheng, D.; Chen, P. Gut Microbiota and Endocrine Disorder. Adv. Exp. Med. Biol. 2020, 1238, 143–164. [Google Scholar] [CrossRef] [PubMed]
- Jayachandran, M.; Chung, S.S.M.; Xu, B. A Critical Review of the Relationship between Dietary Components, the Gut Microbe Akkermansia muciniphila, and Human Health. Crit. Rev. Food Sci. Nutr. 2020, 60, 2265–2276. [Google Scholar (VSports注册入口)] [CrossRef] [PubMed]
- Gil, A.; Rueda, R.; Ozanne, S.E.; van der Beek, E.M.; van Loo-Bouwman, C.; Schoemaker, M.; Marinello, V.; Venema, K.; Stanton, C.; Schelkle, B.; et al. Is There Evidence for Bacterial Transfer via the Placenta and Any Role in the Colonization of the Infant Gut?—A Systematic Review. Crit. Rev. Microbiol. 2020, 46, 493–507. [Google Scholar] [CrossRef] [PubMed]
- De Goffau, M.C.; Lager, S.; Sovio, U.; Gaccioli, F.; Cook, E.; Peacock, S.J.; Parkhill, J.; Charnock-Jones, D.S.; Smith, G.C.S. Human Placenta Has No Microbiome but Can Contain Potential Pathogens. Nature 2019, 572, 329–334. [Google Scholar] [CrossRef] [PubMed]
- Matsuki, T.; Yahagi, K.; Mori, H.; Matsumoto, H.; Hara, T.; Tajima, S.; Ogawa, E.; Kodama, H.; Yamamoto, K.; Yamada, T.; et al. A Key Genetic Factor for Fucosyllactose Utilization Affects Infant Gut Microbiota Development. Nat. Commun. 2016, 7, 11939. [VSports在线直播 - Google Scholar] [CrossRef]
- Bäckhed, F.; Roswall, J.; Peng, Y.; Feng, Q.; Jia, H.; Kovatcheva-Datchary, P.; Li, Y.; Xia, Y.; Xie, H.; Zhong, H.; et al. Dynamics and Stabilization of the Human Gut Microbiome during the First Year of Life. Cell Host Microbe 2015, 17, 690–703. [Google Scholar (VSports最新版本)] [CrossRef] [Green Version]
- Tsuji, H.; Oozeer, R.; Matsuda, K.; Matsuki, T.; Ohta, T.; Nomoto, K.; Tanaka, R.; Kawashima, M.; Kawashima, K.; Nagata, S.; et al. Molecular Monitoring of the Development of Intestinal Microbiota in Japanese Infants. Benef. Microbes 2012, 3, 113–125. [Google Scholar] [CrossRef]
- Ray, C.; Kerketta, J.A.; Rao, S.; Patel, S.; Dutt, S.; Arora, K.; Pournami, F.; Bhushan, P. Human Milk Oligosaccharides: The Journey Ahead. Int. J. Pediatr. 2019, 2019, 2390240. [V体育平台登录 - Google Scholar] [CrossRef] [Green Version]
- Martin, C.R.; Ling, P.R.; Blackburn, G.L. Review of Infant Feeding: Key Features of Breast Milk and Infant Formula. Nutrients 2016, 8, 279. ["V体育官网入口" Google Scholar] [CrossRef] [Green Version]
- Boehm, G.; Jelinek, J.; Stahl, B.; van Laere, K.; Knol, J.; Fanaro, S.; Moro, G.; Vigi, V. Prebiotics in Infant Formulas. J. Clin. Gastroenterol. 2004, 38, S76–S79. [Google Scholar] [CrossRef]
- Pérez-Escalante, E.; Alatorre-Santamaría, S.; Castañeda-Ovando, A.; Salazar-Pereda, V.; Bautista-Ávila, M.; Cruz-Guerrero, A.E.; Flores-Aguilar, J.F.; González-Olivares, L.G. Human Milk Oligosaccharides as Bioactive Compounds in Infant Formula: Recent Advances and Trends in Synthetic Methods. Crit. Rev. Food Sci. Nutr. 2022, 62, 181–214. [Google Scholar] [CrossRef] [PubMed]
- Vandenplas, Y.; Berger, B.; Carnielli, V.P.; Ksiazyk, J.; Lagström, H.; Sanchez Luna, M.; Migacheva, N.; Mosselmans, J.M.; Picaud, J.C.; Possner, M.; et al. Human Milk Oligosaccharides: 2′-Fucosyllactose (2′-FL) and Lacto-N-Neotetraose (LNnT) in Infant Formula. Nutrients 2018, 10, 1161. [Google Scholar (V体育平台登录)] [CrossRef] [PubMed] [Green Version]
- Fulde, M.; Hornef, M.W. Maturation of the Enteric Mucosal Innate Immune System during the Postnatal Period. Immunol. Rev. 2014, 260, 21–34. [Google Scholar] [CrossRef] [PubMed]
- Tamburini, S.; Shen, N.; Wu, H.C.; Clemente, J.C. The Microbiome in Early Life: Implications for Health Outcomes. Nat. Med. 2016, 22, 713–722. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Yin, Y.; Chen, X.; Zhao, Y.; Wu, Y.; Li, Y.; Wang, X.; Chen, H.; Xiang, C. Induction of Intestinal Th17 Cells by Flagellins from Segmented Filamentous Bacteria. Front. Immunol. 2019, 10, 2750. ["V体育官网入口" Google Scholar] [CrossRef]
- Yin, Y.; Wang, Y.; Zhu, L.; Liu, W.; Liao, N.; Jiang, M.; Zhu, B.; Yu, H.D.; Xiang, C.; Wang, X. Comparative Analysis of the Distribution of Segmented Filamentous Bacteria in Humans, Mice and Chickens. ISME J. 2013, 7, 615–621. [Google Scholar] [CrossRef]
- Nobs, S.P.; Tuganbaev, T.; Elinav, E. Microbiome Diurnal Rhythmicity and Its Impact on Host Physiology and Disease Risk. EMBO Rep. 2019, 20, e47129. [Google Scholar] [CrossRef]
- Shankar, V.; Reo, N.V.; Paliy, O. Simultaneous Fecal Microbial and Metabolite Profiling Enables Accurate Classification of Pediatric Irritable Bowel Syndrome. Microbiome 2015, 3, 73. [Google Scholar] [CrossRef] [Green Version]
- Kalantar-Zadeh, K.; Berean, K.J.; Burgell, R.E.; Muir, J.G.; Gibson, P.R. Intestinal Gases: Influence on Gut Disorders and the Role of Dietary Manipulations. Nat. Rev. Gastroenterol. Hepatol. 2019, 16, 733–747. [Google Scholar] [CrossRef]
- Baker, D.; Mangla, J.; Fischer, A. Abdominal Distension in an Infant. Gastroenterology 2015, 148, e4–e5. [Google Scholar] [CrossRef]
- Lu, A.; Zhao, W. Clinical Analysis of 118 Cases of Neonatal Abdominal Distension. Clin. J. Med. Off. 2004, 2004, 40–41. [VSports - Google Scholar]
- Bangalore, H.; Ahmed, J.; Bible, J.; Menson, E.N.; Durward, A.; Tong, C.Y. Abdominal Distension: An Important Feature in Human Parechovirus Infection. Pediatr. Infect. Dis. J. 2011, 30, 260–262. [Google Scholar] [CrossRef] [PubMed]
- Bouvet, P.; Ferraris, L.; Dauphin, B.; Popoff, M.R.; Butel, M.J.; Aires, J. 16S RRNA Gene Sequencing, Multilocus Sequence Analysis, and Mass Spectrometry Identification of the Proposed New Species “Clostridium neonatale”. J. Clin. Microbiol. 2014, 52, 4129–4136. ["VSports最新版本" Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carbonero, F.; Benefiel, A.C.; Alizadeh-Ghamsari, A.H.; Gaskins, H.R. Microbial Pathways in Colonic Sulfur Metabolism and Links with Health and Disease. Front. Physiol. 2012, 3, 448. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Janmohammadi, P.; Nourmohammadi, Z.; Fazelian, S.; Mirzababaei, A.; Alizadeh, S.; Zarei, M.; Daneshzad, E.; Djafarian, K. Does Infant Formula Containing Synbiotics Support Adequate Growth in Infants? A Meta-Analysis and Systematic Review of Randomized Controlled Trials. Crit. Rev. Food Sci. Nutr. 2021, 7, 1–12. [Google Scholar] [CrossRef]
- Rubio-Escudero, C.; Valverde-Fernández, J.; Nepomuceno-Chamorro, I.; Pontes-Balanza, B.; Hernández-Mendoza, Y.; Rodríguez-Herrera, A. Data Mining Techniques Applied to Hydrogen Lactose Breath Test. PLoS ONE 2017, 12, e0170385. [Google Scholar] [CrossRef]
- Pimentel, M.; Saad, R.J.; Long, M.D.; Rao, S.S.C. ACG Clinical Guideline: Small Intestinal Bacterial Overgrowth. Am. J. Gastroenterol. 2020, 115, 165–178. [Google Scholar (VSports最新版本)] [CrossRef]
- Grech, A.; Collins, C.E.; Holmes, A.; Lal, R.; Duncanson, K.; Taylor, R.; Gordon, A. Maternal Exposures and the Infant Gut Microbiome: A Systematic Review with Meta-Analysis. Gut Microbes 2021, 13, 1897210. [Google Scholar] [CrossRef]
- Fan, B.; Yin, Y.S.; Sun, G.; Zhu, L.Y.; Liu, W.; Pi, X.E.; Fei, D.B.; Peng, L.H.; Wang, X.; Yang, Y.S. Effects of Different Carbohydrates on the Simulation of Human Intestinal Bacterial Flora with In Vitro Culture. Zhonghua Nei Ke Za Zhi 2016, 55, 381–385. [Google Scholar] [CrossRef]
- Yin, Y.; Fan, B.; Liu, W. Investigation into the Stability and Culturability of Chinese Enterotypes. Sci. Rep. 2017, 7, 7947. [Google Scholar] [CrossRef] [Green Version]
- Chen, J.; Pi, X.; Liu, W.; Ding, Q.; Wang, X.; Jia, W.; Zhu, L. Age-Related Changes of Microbiota in Midlife Associated with Reduced Saccharolytic Potential: An In Vitro Study. BMC Microbiol. 2021, 21, 47. [Google Scholar] [CrossRef] [PubMed]
- Levitt, M.D.; Ingelfinger, F.J. Hydrogen and Methane Production in Man. Ann. N. Y. Acad. Sci. 1968, 150, 75–81. [Google Scholar] [CrossRef] [PubMed]
- Wolf, P.G.; Biswas, A.; Morales, S.E.; Greening, C.; Gaskins, H.R. H2 Metabolism Is Widespread and Diverse among Human Colonic Microbes. Gut Microbes 2016, 7, 235–245. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Roediger, W.E.; Duncan, A.; Kapaniris, O.; Millard, S. Reducing Sulfur Compounds of the Colon Impair Colonocyte Nutrition: Implications for Ulcerative Colitis. Gastroenterology 1993, 104, 802–809. ["V体育ios版" Google Scholar] [CrossRef]
- Ramasamy, S.; Singh, S.; Taniere, P.; Langman, M.J.; Eggo, M.C. Sulfide-Detoxifying Enzymes in the Human Colon Are Decreased in Cancer and Upregulated in Differentiation. Am. J. Physiol. Gastrointest. Liver Physiol. 2006, 291, G288–G296. [Google Scholar] [CrossRef] [Green Version]
- Pimentel, M.; Mayer, A.G.; Park, S.; Chow, E.J.; Hasan, A.; Kong, Y. Methane Production during Lactulose Breath Test Is Associated with Gastrointestinal Disease Presentation. Dig. Dis. Sci. 2003, 48, 86–92. [Google Scholar] [CrossRef]
- Pennisi, E. Survey of archaea in the Body Reveals Other Microbial Guests. Science 2017, 358, 983. [Google Scholar] [CrossRef]
- King, T.S.; Elia, M.; Hunter, J.O. Abnormal Colonic Fermentation in Irritable Bowel Syndrome. Lancet 1998, 352, 1187–1189. [Google Scholar (VSports)] [CrossRef]
- Bode, L. Human Milk Oligosaccharides: Every Baby Needs a Sugar Mama. Glycobiology 2012, 22, 1147–1162. [Google Scholar (V体育官网入口)] [CrossRef] [Green Version]
- Smilowitz, J.T.; Lebrilla, C.B.; Mills, D.A.; German, J.B.; Freeman, S.L. Breast Milk Oligosaccharides: Structure-Function Relationships in the Neonate. Annu. Rev. Nutr. 2014, 34, 143–169. [Google Scholar] [CrossRef] [Green Version]
- Kirk, E. The Quantity and Composition of Human Colonic Flatus. Gastroenterology 1949, 12, 782–794. [Google Scholar] [CrossRef]
- Hasler, W.L. Irritable Bowel Syndrome and Bloating. Best Pract. Res. Clin. Gastroenterol. 2007, 21, 689–707. [Google Scholar] [CrossRef] [PubMed]
- Ruiz-Moyano, S.; Totten, S.M.; Garrido, D.A.; Smilowitz, J.T.; German, J.B.; Lebrilla, C.B.; Mills, D.A. Variation in Consumption of Human Milk Oligosaccharides by Infant Gut-Associated Strains of Bifidobacterium breve. Appl. Environ. Microbiol. 2013, 79, 6040–6049. ["V体育官网入口" Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sela, D.A.; Chapman, J.; Adeuya, A.; Kim, J.H.; Chen, F.; Whitehead, T.R.; Lapidus, A.; Rokhsar, D.S.; Lebrilla, C.B.; German, J.B.; et al. The Genome Sequence of Bifidobacterium longum subsp infantis Reveals Adaptations for Milk Utilization within the Infant Microbiome. Proc. Natl. Acad. Sci. USA 2008, 105, 18964–18969. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ruiz-Palacios, G.M.; Cervantes, L.E.; Ramos, P.; Chavez-Munguia, B.; Newburg, D.S. Campylobacter jejuni Binds Intestinal H(O) Antigen (Fuc Alpha 1, 2Gal Beta 1, 4GlcNAc), and Fucosyloligosaccharides of Human Milk Inhibit Its Binding and Infection. J. Biol. Chem. 2003, 278, 14112–14120. ["VSports注册入口" Google Scholar] [CrossRef] [Green Version]
- Weichert, S.; Jennewein, S.; Hüfner, E.; Weiss, C.; Borkowski, J.; Putze, J.; Schroten, H. Bioengineered 2′-Fucosyllactose and 3-Fucosyllactose Inhibit the Adhesion of Pseudomonas aeruginosa and Enteric Pathogens to Human Intestinal and Respiratory Cell Lines. Nutr. Res. 2013, 33, 831–838. [Google Scholar] [CrossRef]
- Yu, Z.T.; Nanthakumar, N.N.; Newburg, D.S. The Human Milk Oligosaccharide 2′-Fucosyllactose Quenches Campylobacter jejuni-Induced Inflammation in Human Epithelial Cells HEp-2 and HT-29 and in Mouse Intestinal Mucosa. J. Nutr. 2016, 146, 1980–1990. [Google Scholar] [CrossRef]
- Morrow, A.L.; Ruiz-Palacios, G.M.; Jiang, X.; Newburg, D.S. Human-Milk Glycans That Inhibit Pathogen Binding Protect Breast-Feeding Infants Against Infectious Diarrhea. J. Nutr. 2005, 135, 1304–1307. [Google Scholar (V体育官网)] [CrossRef] [Green Version]
- He, Y.; Liu, S.; Kling, D.E.; Leone, S.; Lawlor, N.T.; Huang, Y.; Feinberg, S.B.; Hill, D.R.; Newburg, D.S. The Human Milk Oligosaccharide 2′-Fucosyllactose Modulates CD14 Expression in Human Enterocytes, Thereby Attenuating LPS-Induced Inflammation. Gut 2016, 65, 33–46. ["VSports注册入口" Google Scholar] [CrossRef] [Green Version]
- Holscher, H.D.; Davis, S.R.; Tappenden, K.A. Human Milk Oligosaccharides Influence Maturation of Human Intestinal Caco-2Bbe and HT-29 Cell Lines. J. Nutr. 2014, 144, 586–591. [Google Scholar (V体育安卓版)] [CrossRef] [Green Version]
- Castillo-Courtade, L.; Han, S.; Lee, S.; Mian, F.M.; Buck, R.; Forsythe, P. Attenuation of Food Allergy Symptoms Following Treatment with Human Milk Oligosaccharides in a Mouse Model. Allergy 2015, 70, 1091–1102. [Google Scholar] [CrossRef] [PubMed]
- Goehring, K.C.; Marriage, B.J.; Oliver, J.S.; Wilder, J.A.; Barrett, E.G.; Buck, R.H. Similar to Those Who Are Breastfed, Infants Fed a Formula Containing 2′-Fucosyllactose Have Lower Inflammatory Cytokines in a Randomized Controlled Trial. J. Nutr. 2016, 146, 2559–2566. [VSports注册入口 - Google Scholar] [CrossRef] [PubMed] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pi, X.; Hua, H.; Wu, Q.; Wang, X.; Wang, X.; Li, J. Effects of Different Feeding Methods on the Structure, Metabolism, and Gas Production of Infant and Toddler Intestinal Flora and Their Mechanisms. Nutrients 2022, 14, 1568. https://doi.org/10.3390/nu14081568
Pi X, Hua H, Wu Q, Wang X, Wang X, Li J. Effects of Different Feeding Methods on the Structure, Metabolism, and Gas Production of Infant and Toddler Intestinal Flora and Their Mechanisms. Nutrients. 2022; 14(8):1568. https://doi.org/10.3390/nu14081568
Chicago/Turabian StylePi, Xionge, Hanju Hua, Qi Wu, Xiaorong Wang, Xin Wang, and Jinjun Li. 2022. "Effects of Different Feeding Methods on the Structure, Metabolism, and Gas Production of Infant and Toddler Intestinal Flora and Their Mechanisms" Nutrients 14, no. 8: 1568. https://doi.org/10.3390/nu14081568
APA StylePi, X., Hua, H., Wu, Q., Wang, X., Wang, X., & Li, J. (2022). Effects of Different Feeding Methods on the Structure, Metabolism, and Gas Production of Infant and Toddler Intestinal Flora and Their Mechanisms. Nutrients, 14(8), 1568. https://doi.org/10.3390/nu14081568