Enteral Nutrition in Pediatric Patients Undergoing Hematopoietic SCT Promotes the Recovery of Gut Microbiome Homeostasis (VSports注册入口)
General representation of the fecal sampling for each enrolled subject. On the top of the figure are depicted the ten patients that followed EN (enteral nutrition), while at the bottom are highlighted the ten subjects treated with PN (parenteral nutrition). Diamonds indicate each individual fecal sample taken pre and post-transplant. Hematopoietic stem cell transplantation (HSCT) is indicated by the vertical line in the graph and the moment of the eventual acute graft-versus-host disease (aGvHD) occurrence is reported with a red star. The bars below each subject’s timeline indicate the type and the length of the nutritional regimen followed: blue bars indicate EN and red bars indicate PN.
"> Figure 2Diversity of pre- and post-HSCT samples in patients treated with enteral and parenteral nutritional regimens. (A) Alpha diversity estimated with observed amplicon sequence variants (ASVs, top) and Faith’s Phylogenetic Diversity (PD_whole_tree, bottom) metrics for samples taken at the baseline (PRE), during the transplant (HSCT) and up to 120 days post-HSCT (POST) from patients treated with enteral (E) and parenteral (P) nutrition. Subjects treated with PN (in red) showed a significantly higher number of ASVs (Wilcoxon rank-sum test; p = 0.01). (B) Principal Coordinates Analysis (PCoA) based on unweighted UniFrac distances between samples taken before (PRE) and after the transplant (HSCT, up to 30 days post-HSCT; POST40, up to 40 days post-HSCT; POST60, from 41 to 60 days post-HSCT; POST120, up to 120 days post-transplant) from patients treated with EN (top) and PN (bottom). A significant separation among groups was observed only in patients treated with PN (permutation test with pseudo-F ratios (Adonis), p = 0.001).
"> Figure 3Differences in the gut microbiota composition between HSCT patients following enteral and parenteral nutrition. Boxplots representing the relative abundance distribution of genera that where significantly different between pre-HSCT, HSCT and post-HSCT time points in PN (in red) and EN patients (in blue). * p value ≤ 0.05; ** p value ≤ 0.01; Wilcoxon rank-sum test.
"> Figure 4Fecal levels of short-chain fatty acids in HSCT patients after enteral and parenteral nutritional regimens. Boxplots showing the absolute amount distribution for short-chain fatty acids (SCFAs) measured in μmol/g. * p value ≤ 0.05; ** p value ≤ 0.01; Wilcoxon rank-sum test.
">
Abstract
Hematopoietic stem cell transplantation (HSCT) is the first-line immunotherapy to treat several hematologic disorders, although it can be associated with many complications reducing the survival rate, such as acute graft-versus-host disease (aGvHD) and infections. Given the fundamental role of the gut microbiome (GM) for host health, it is not surprising that a suboptimal path of GM recovery following HSCT may compromise immune homeostasis and/or increase the risk of opportunistic infections, with an ultimate impact in terms of aGvHD onset. Traditionally, the first nutritional approach in post-HSCT patients is parenteral nutrition (PN), which is associated with several clinical adverse effects, supporting enteral nutrition (EN) as a preferential alternative. The aim of the study was to evaluate the impact of EN vs. PN on the trajectory of compositional and functional GM recovery in pediatric patients undergoing HSCT. The GM structure and short-chain fatty acid (SCFA) production profiles were analyzed longitudinally in twenty pediatric patients receiving HSCT—of which, ten were fed post-transplant with EN and ten with total PN. According to our findings, we observed the prompt recovery of a structural and functional eubiotic GM layout post-HSCT only in EN subjects, thus possibly reducing the risk of systemic infections and GvHD onset. Keywords: enteral nutrition; parenteral nutrition; gut microbiota; short-chain fatty acids; hematopoietic stem cell transplantation; graft-versus-host disease V体育官网入口.1. Introduction
2. Materials and Methods (V体育2025版)
2.1. Subject Enrollment and Sample Collection
2.2. Microbial DNA Extraction
2.3. 16S rRNA Gene Amplification and Sequencing
2.4. Gas Chromatography-Mass Spectrometry Determination of Short-Chain Fatty Acids in Fecal Samples
2.5. Bioinformatics and Statistical Analysis
3. Results
3.1. Variation in the Overall Bacterial Biodiversity in HSCT Patients during Enteral and Parenteral Feeding
3.2. Gut Microbiota Composition in Enteral and Parenteral Nutritional Regimen during the HSCT Recovery (V体育2025版)
3.3. Short-Chain Fatty Acid Production in EN and PN Patients Undergoing HSCT
4. Discussion
Supplementary Materials
Author Contributions
Funding
Acknowledgments
"V体育ios版" Conflicts of Interest
"VSports" References
- Jenq, R.R.; van den Brink, M.R.M. Allogeneic haematopoietic stem cell transplantation: Individualized stem cell and immune therapy of cancer. Nat. Rev. Cancer 2010, 10, 213–221. [Google Scholar] [CrossRef] [PubMed]
- Shono, Y.; van den Brink, M.R.M. Gut microbiota injury in allogeneic haematopoietic stem cell transplantation. Nat. Rev. Cancer 2018, 18, 283–295. [Google Scholar] [CrossRef] [PubMed]
- Zeiser, R.; Blazar, B.R. Acute graft-versus-host disease—Biologic process, prevention, and therapy. N. Engl. J. Med. 2017, 377, 2167–2179. ["VSports" Google Scholar] [CrossRef] [PubMed]
- Biagi, E.; Zama, D.; Nastasi, C.; Consolandi, C.; Fiori, J.; Rampelli, S.; Turroni, S.; Centanni, M.; Severgnini, M.; Peano, C.; et al. Gut microbiota trajectory in pediatric patients undergoing hematopoietic SCT. Bone Marrow Transpl. 2015, 50, 992–998. [Google Scholar] [CrossRef]
- Biagi, E.; Zama, D.; Rampelli, S.; Turroni, S.; Brigidi, P.; Consolandi, C.; Severgnini, M.; Picotti, E.; Gasperini, P.; Merli, P.; et al. Early gut microbiota signature of aGvHD in children given allogeneic hematopoietic cell transplantation for hematological disorders. BMC Med. Genom. 2019, 12, 49. [Google Scholar] [CrossRef]
- Zama, D.; Biagi, E.; Masetti, R.; Gasperini, P.; Prete, A.; Candela, M.; Brigidi, P.; Pession, A. Gut microbiota and hematopoietic stem cell transplantation: Where do we stand? Bone Marrow Transpl. 2017, 52, 7–14. ["VSports最新版本" Google Scholar] [CrossRef]
- Taur, Y.; Jenq, R.R.; Perales, M.A.; Littmann, E.R.; Morjaria, S.; Ling, L.; No, D.; Gobourne, A.; Viale, A.; Dahi, P.B.; et al. The effects of intestinal tract bacterial diversity on mortality following allogeneic hematopoietic stem cell transplantation. Blood 2014, 124, 1174–1182. [Google Scholar] [CrossRef]
- Hill, G.R.; Ferrara, J.L. The primacy of the gastrointestinal tract as a target organ of acute graft-versus-host disease: Rationale for the use of cytokine shields in allogeneic bone marrow transplantation. Blood 2000, 95, 2754–2759. [Google Scholar] [CrossRef]
- Koyama, M.; Mukhopadhyay, P.; Schuster, I.S.; Henden, A.S.; Hülsdünker, J.; Varelias, A.; Vetizou, M.; Kuns, R.D.; Robb, R.J.; Zhang, P.; et al. MHC Class II Antigen Presentation by the Intestinal Epithelium Initiates Graft-versus-Host Disease and Is Influenced by the Microbiota. Immunity 2019, 51, 885–898. [Google Scholar] [CrossRef]
- Bäckhed, F.; Ley, R.E.; Sonnenburg, J.L.; Peterson, D.A.; Gordon, J.I. Host-Bacterial mutualism in the human intestine. Science 2005, 307, 1915–1920. [VSports - Google Scholar]
- Rooks, M.G.; Garrett, W.S. Gut microbiota, metabolites and host immunity. Nat. Rev. Immunol. 2016, 16, 341–352. [Google Scholar] [CrossRef] [PubMed]
- Tremaroli, V.; Bäckhed, F. Functional interactions between the gut microbiota and host metabolism. Nature 2012, 489, 242–249. ["VSports最新版本" Google Scholar] [CrossRef] [PubMed]
- Turroni, S.; Brigidi, P.; Cavalli, A.; Candela, M. Microbiota-Host transgenomic metabolism, bioactive molecules from the inside. J. Med. Chem. 2018, 61, 47–61. [VSports最新版本 - Google Scholar] [CrossRef] [PubMed]
- Mathewson, N.D.; Jenq, R.; Mathew, A.V.; Koenigsknecht, M.; Hanash, A.; Toubai, T.; Oravecz-Wilson, K.; Wu, S.R.; Sun, Y.; Rossi, C.; et al. Gut microbiome-derived metabolites modulate intestinal epithelial cell damage and mitigate graft-versus-host disease. Nat. Immunol. 2016, 17, 505–513. [Google Scholar] [CrossRef]
- Petersson, J.; Schreiber, O.; Hansson, G.C.; Gendler, S.J.; Velcich, A.; Lundberg, J.O.; Roos, S.; Holm, L.; Phillipson, M. Importance and regulation of the colonic mucus barrier in a mouse model of colitis. Am. J. Physiol. Gastrointest. Liver Physiol. 2011, 300, G327–G333. [Google Scholar] [CrossRef]
- Fuji, S.; Einsele, H.; Savani, B.N.; Kapp, M. Systematic nutritional support in allogeneic hematopoietic stem cell transplant recipients. Biol. Blood Marrow Transpl. 2015, 21, 1707–1713. [Google Scholar] [CrossRef]
- Walrath, M.; Bacon, C.; Foley, S.; Fung, H.C. Gastrointestinal side effects and adequacy of enteral intake in hematopoietic stem cell transplant patients. Nutr. Clin. Pract. 2015, 30, 305–310. [Google Scholar] [CrossRef]
- Evans, J.C.; Hirani, S.P.; Needle, J.J. Nutritional and post-transplantation outcomes of enteral versus parenteral nutrition in pediatric hematopoietic stem cell transplantation: A systematic review of randomized and nonrandomized studies. Biol. Blood Marrow Transpl. 2019, 25, e252–e259. [Google Scholar] [CrossRef]
- Guièze, R.; Lemal, R.; Cabrespine, A.; Hermet, E.; Tournilhac, O.; Combal, C.; Bay, J.O.; Bouteloup, C. Enteral versus parenteral nutritional support in allogeneic haematopoietic stem-cell transplantation. Clin. Nutr. 2014, 33, 533–538. [Google Scholar (V体育安卓版)] [CrossRef]
- Yilmaz, G.; Koksal, I.; Aydin, K.; Caylan, R.; Sucu, N.; Aksoy, F. Risk factors of catheterrelated bloodstream infections in parenteral nutrition catheterization. J. Parenter. Enter. Nutr. 2007, 31, 284–287. [Google Scholar] [CrossRef]
- Lough, M.; Watkins, R.; Campbell, M.; Carr, K.; Burnett, A.; Shenkin, A. Parenteral nutrition in bone marrow transplantation. Clin. Nutr. 1990, 9, 97–101. ["VSports最新版本" Google Scholar] [CrossRef]
- Buchman, A.L.; Moukarzel, A.A.; Bhuta, S.; Belle, M.; Ament, M.E.; Eckhert, C.D.; Hollander, D.; Gornbein, J.; Kopple, J.D.; Vijayaroghavan, S.R. Parenteral nutrition is associated with intestinal morphologic and functional changes in humans. J. Parenter. Enter. Nutr. 1995, 19, 453–460. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Tian, F.; Wang, P.; Zheng, H.; Zhang, Y.; Tian, H.; Zhang, L.; Gao, X.; Wang, X. Gut Microbiota as a Modulator of Paneth Cells During Parenteral Nutrition in Mice. JPEN J. Parenter. Enter. Nutr. 2018, 42, 1280–1287. ["VSports注册入口" Google Scholar] [CrossRef] [PubMed]
- Dahlgren, A.F.; Pan, A.; Lam, V.; Gouthro, K.C.; Simpson, P.M.; Salzman, N.H.; Nghiem-Rao, T.H. Longitudinal changes in the gut microbiome of infants on total parenteral nutrition. Pediatric Res. 2019, 86, 107–114. [Google Scholar] [CrossRef] [PubMed]
- Yu, Z.; Morrison, M. Improved extraction of PCR-quality community DNA from digesta and fecal samples. Biotechniques 2004, 36, 808–812. ["VSports最新版本" Google Scholar] [CrossRef] [PubMed]
- Klindworth, A.; Pruesse, E.; Schweer, T.; Peplies, J.; Quast, C.; Horn, M.; Glöckner, F.O. Evaluation of general 16S ribosomal RNA gene PCR primers for classical and next-generation sequencing-based diversity studies. Nucleic Acids Res. 2013, 41, e1. ["VSports app下载" Google Scholar] [CrossRef]
- Schnorr, S.L.; Candela, M.; Rampelli, S.; Centanni, M.; Consolandi, C.; Basaglia, G.; Turroni, S.; Biagi, E.; Peano, C.; Severgnini, M.; et al. Gut microbiome of the Hadza hunter-gatherers. Nat. Commun. 2014, 5, 3654. [Google Scholar] [CrossRef]
- Fiori, J.; Turroni, S.; Candela, M.; Brigidi, P.; Gotti, R. Simultaneous HS-SPME GC-MS determination of short chain fatty acids, trimethylamine and trimethylamine N-oxide for gut microbiota metabolic profile. Talanta 2018, 189, 573–578. [Google Scholar] [CrossRef]
- Masella, A.P.; Bartram, A.K.; Truszkowski, J.M.; Brown, D.G.; Neufeld, J.D. PANDAseq: Paired-end assembler for illumina sequences. BMC Bioinform. 2012, 13, 31. [Google Scholar] [CrossRef]
- Bolyen, E.; Rideout, J.R.; Dillon, M.R.; Bokulich, N.A.; Abnet, C.; Al-Ghalith, G.A.; Alexander, H.; Alm, E.J.; Arumugam, M.; Asnicar, F.; et al. QIIME 2: Reproducible, interactive, scalable, and extensible microbiome data science. PeerJ 2018. [Google Scholar (VSports app下载)] [CrossRef]
- Callahan, B.J.; McMurdie, P.J.; Rosen, M.J.; Han, A.W.; Johnson, A.J.; Holmes, S.P. DADA2: High-resolution sample inference from Illumina amplicon data. Nat. Methods 2016, 13, 581–583. [Google Scholar] [CrossRef] [PubMed]
- Callahan, B.J.; McMurdie, P.J.; Holmes, S.P. Exact sequence variants should replace operational taxonomic units in marker-gene data analysis. ISME J. 2017, 11, 2639–2643. [Google Scholar] [CrossRef] [PubMed]
- Rognes, T.; Flouri, T.; Nichols, B.; Quince, C.; Mahé, F. VSEARCH: A versatile open source tool for metagenomics. PeerJ 2016, 4, e2584. [Google Scholar] [CrossRef] [PubMed]
- The R Project for Statistical Computing. Available online: https://www.r-project.org/ (accessed on 26 April 2019).
- Ordination Methods, Diversity Analysis and Other Functions for Community and Vegetation Ecologists. Available online: http://www.cran.r-project.org/package=vegan/ (accessed on 24 April 2019).
- Culhane, A.C.; Thioulouse, J.; Perrière, G.; Higgins, D.G. MADE4: An R package for multivariate analysis of gene expression data. Bioinformatics 2005, 21, 2789–2790. [Google Scholar (VSports手机版)] [CrossRef] [PubMed]
- Arends, J.; Bachmann, P.; Baracos, V.; Barthelemy, N.; Bertz, H.; Bozzetti, F.; Fearon, K.; Hütterer, E.; Isenring, E.; Kaasa, S.; et al. ESPEN guidelines on nutrition in cancer patients. Clin. Nutr. 2017, 36, 11–48. [VSports注册入口 - Google Scholar] [CrossRef] [PubMed]
- Seguy, D.; Duhamel, A.; Rejeb, M.B.; Gomez, E.; Buhl, N.D.; Bruno, B.; Cortot, A. Yakoub-Agha, I. Better outcome of patients undergoing enteral tube feeding after myeloablative conditioning for allogeneic stem cell transplantation. Transplantation 2012, 94, 287–294. [Google Scholar] [CrossRef] [PubMed]
- Azarnoush, S.; Bruno, B.; Beghin, L.; Guimber, D.; Nelken, B.; Yakoub-Agha, I.; Seguy, D. Enteral nutrition: A first option for nutritional support of children following allo-SCT? Bone Marrow Transpl. 2012, 47, 1191–1195. ["VSports手机版" Google Scholar] [CrossRef]
- Noor, F.; Kaysen, A.; Wilmes, P.; Schneider, J.G. The gut microbiota and hematopoietic stem cell transplantation: Challenges and potentials. J. Innate Immun. 2019, 11, 405–415. [Google Scholar] [CrossRef]
- Wilmanski, T.; Rappaport, N.; Earls, J.C.; Magis, A.T.; Manor, O.; Lovejoy, J.; Omenn, G.S.; Hood, L.; Gibbons, S.M.; Price, N.D. Blood metabolome predicts gut microbiome α-diversity in humans. Nat. Biotechnol. 2019, 37, 1217–1228. [Google Scholar] [CrossRef]
- Reikvam, H.; Grønningsæter, I.S.; Mosevoll, K.A.; Lindås, R.; Hatfield, K.; Bruserud, O. Patients with Treatment-Requiring Chronic Graft versus Host Disease after Allogeneic Stem Cell Transplantation Have Altered Metabolic Profiles due to the Disease and Immunosuppressive Therapy: Potential Implication for Biomarkers. Front. Immunol. 2017, 8, 1979. [Google Scholar] [CrossRef]
- Andersen, S.; Staudacher, H.; Weber, N.; Kennedy, G.; Varelias, A.; Banks, M.; Bauer, J. Pilot study investigating the effect of enteral and parenteral nutrition on the gastrointestinal microbiome post-allogeneic transplantation. Br. J. Haematol. 2019. [VSports - Google Scholar] [CrossRef] [PubMed]
- Macy, J.M.; Ljungdahl, L.G.; Gottschalk, G. Pathway of succinate and propionate formation in Bacteroides fragilis. J. Bacteriol. 1978, 134, 84–91. [Google Scholar] [PubMed]
- Macy, J.M.; Probst, I. The biology of gastrointestinal Bacteroides. Annu. Rev. Microbiol. 1979, 33, 561–594. [Google Scholar] [CrossRef] [PubMed]
- Reichardt, N.; Duncan, S.H.; Young, P.; Belenguer, A.; McWilliam Leitch, C.; Scott, K.P.; Flint, H.J.; Louis, P. Phylogenetic distribution of three pathways for propionate production within the human gut microbiota. ISME J. 2014, 8, 1323–1335. [Google Scholar] [CrossRef]
- Lordan, C.; Thapa, D.; Ross, R.P.; Cotter, P.D. Potential for enriching next-generation health-promoting gut bacteria through prebiotics and other dietary components. Gut Microbes 2019, 22, 1–20. [Google Scholar] [CrossRef]
- Morrison, D.J.; Preston, T. Formation of short chain fatty acids by the gut microbiota and their impact on human metabolism. Gut Microbes 2016, 7, 189–200. [Google Scholar] [CrossRef]
- Anand, S.; Kaur, H.; Mande, S.S. Comparative in silico analysis of butyrate production pathways in gut commensals and pathogens. Front. Microbiol. 2016, 7, 1945. [Google Scholar] [CrossRef]
- Tvedt, T.H.A.; Skaarud, K.J.; Tjønnfjord, G.E.; Gedde-Dahl, T.; Iversen, P.O.; Bruserud, Ø. The systemic metabolic profile early after allogeneic stem cell transplantation: Effects of adequate energy support administered through enteral feeding tube. Biol. Blood Marrow Transpl. 2019. ["VSports最新版本" Google Scholar] [CrossRef]
- Jenq, R.R.; Taur, Y.; Devlin, S.M.; Ponce, D.M.; Goldberg, J.D.; Ahr, K.F.; Littmann, E.R.; Ling, L.; Gobourne, A.C.; Miller, L.C.; et al. Intestinal Blautia is associated with reduced death from Graft-versus-Host Disease. Biol. Blood Marrow Transpl. 2015, 21, 1373–1383. ["V体育2025版" Google Scholar] [CrossRef]
- Skaarud, K.J.; Veierød, M.B.; Lergenmuller, S.; Bye, A.; Iversen, P.O.; Tjønnfjord, G.E. Body weight, body composition and survival after 1 year: Follow-up of a nutritional intervention trial in allo-HSCT recipients. Bone Marrow Transpl. 2019. [Google Scholar] [CrossRef]
- Skaarud, K.J.; Hjermstad, M.J.; Bye, A.; Veierød, M.B.; Gudmundstuen, A.M.; Lundin, K.E.A.; Distante, S.; Brinch, L.; Tjønnfjord, G.E.; Iversen, P.O. Effects of individualized nutrition after allogeneic hematopoietic stem cell transplantation following myeloablative conditioning; a randomized controlled trial. Clin. Nutr. ESPEN 2018, 28, 59–66. [Google Scholar] [CrossRef] [PubMed]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
V体育官网 - Share and Cite
D’Amico, F.; Biagi, E.; Rampelli, S.; Fiori, J.; Zama, D.; Soverini, M.; Barone, M.; Leardini, D.; Muratore, E.; Prete, A.; et al. Enteral Nutrition in Pediatric Patients Undergoing Hematopoietic SCT Promotes the Recovery of Gut Microbiome Homeostasis. Nutrients 2019, 11, 2958. https://doi.org/10.3390/nu11122958
D’Amico F, Biagi E, Rampelli S, Fiori J, Zama D, Soverini M, Barone M, Leardini D, Muratore E, Prete A, et al. Enteral Nutrition in Pediatric Patients Undergoing Hematopoietic SCT Promotes the Recovery of Gut Microbiome Homeostasis. Nutrients. 2019; 11(12):2958. https://doi.org/10.3390/nu11122958
Chicago/Turabian StyleD’Amico, Federica, Elena Biagi, Simone Rampelli, Jessica Fiori, Daniele Zama, Matteo Soverini, Monica Barone, Davide Leardini, Edoardo Muratore, Arcangelo Prete, and et al. 2019. "Enteral Nutrition in Pediatric Patients Undergoing Hematopoietic SCT Promotes the Recovery of Gut Microbiome Homeostasis" Nutrients 11, no. 12: 2958. https://doi.org/10.3390/nu11122958
APA StyleD’Amico, F., Biagi, E., Rampelli, S., Fiori, J., Zama, D., Soverini, M., Barone, M., Leardini, D., Muratore, E., Prete, A., Gotti, R., Pession, A., Masetti, R., Brigidi, P., Turroni, S., & Candela, M. (2019). Enteral Nutrition in Pediatric Patients Undergoing Hematopoietic SCT Promotes the Recovery of Gut Microbiome Homeostasis. Nutrients, 11(12), 2958. https://doi.org/10.3390/nu11122958