The Effect of Synbiotic Supplementation on Uremic Toxins, Oxidative Stress, and Inflammation in Hemodialysis Patients—Results of an Uncontrolled Prospective Single-Arm Study (VSports在线直播)
Mean value and confidence interval (CI) of serum indoxyl sulfate before and after supplementation.
"> Figure 2Mean value and CI of serum p-sresyl sulfate before and after supplementation.
"> Figure 3Mean value and CI of serum MDA before and after supplementation.
"> Figure 4Mean value and CI of serum IL-6 before and after supplementation.
">
Abstract (VSports app下载)
Introduction: Numerous studies to date have shown that the development of dysbiotic gut microbiota is a characteristic finding in chronic kidney disease (CKD). A number of uremic toxins progressively accumulate in the course of CKD, some of them generated by the intestinal microbiome, such as indoxyl sulfate (IS) and p-cresyl sulfate (p-CS). They are found to be involved in the pathogenesis of certain complications of uremic syndrome, including low-grade chronic inflammation and oxidative stress. The aim of the present study is to research the serum concentration of IS and p-CS in end stage renal disease (ESRD) patients undergoing conventional hemodialysis, as well as to study the possibilities of influencing some markers of inflammation and oxidative stress after taking a synbiotic. Materials and Methods: Thirty patients with end-stage renal disease (ESRD) undergoing hemodialysis treatment who were taking a synbiotic in the form of Lactobacillus acidophilus La-14 2 × 1011 (CFU)/g and prebiotic fructooligosaccharides were included in the study. Serum levels of total IS, total p-CS, Interleukin-6 (IL-6), and Malondialdehyde (MDA) were measured at baseline and after 8 weeks. Results. The baseline values of the four investigated indicators in the patients were significantly higher—p-CS (29. 26 ± 58. 32 pg/mL), IS (212. 89 ± 208. 59 ng/mL), IL-6 (13. 84 ± 2. 02 pg/mL), and MDA (1430. 33 ± 583. 42 pg/mL), compared to the results obtained after 8 weeks of intake, as we found a significant decrease in the parameters compared to the baseline—p-CS (6. 40 ± 0. 79 pg/mL, p = 0. 041), IS (47 V体育官网入口. 08 ± 3. 24 ng/mL, p < 0. 001), IL-6 (9. 14 ± 1. 67 pg/mL, p < 0. 001), and MDA (1003. 47 ± 518. 37 pg/mL, p < 0. 001). Conclusions: The current study found that the restoration of the intestinal microbiota in patients with CKD significantly decreases the level of certain uremic toxins. It is likely that this favorably affects certain aspects of CKD, such as persistent low-grade inflammation and oxidative stress. Keywords: chronic kidney disease; hemodialysis; indoxyl sulfate; p-cresyl sulfate; interleukin-6; malondialdehyde; synbiotic .1. Introduction
2. Materials and Methods (VSports app下载)
2.1. Study Settings and Population
"VSports app下载" 2.2. Laboratory Analysis
2.3. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
"VSports最新版本" Informed Consent Statement
Data Availability Statement
"V体育2025版" Conflicts of Interest
Abbreviations
CKD | chronic kidney disease |
IS | indoxyl sulfate |
p-CS | p-cresyl sulfate |
ESRD | end-stage renal disease |
CFU | colony forming units |
ELISA | enzyme-linked immunosorbent assay |
SEM | standard error of mean |
IL | interleukin 6 |
MDA | malondialdehyde |
SCFA | short-chain fatty acids |
FGF-23 | fibroblast growth factor 23 |
TNF-α | tumor necrosis factor–alpha |
CRP–C | reactive protein |
References
- Ramezani, A.; Raj, D.S. The Gut Microbiome, Kidney Disease, and Targeted Interventions. J. Am. Soc. Nephrol. 2014, 25, 657–670. [Google Scholar] [CrossRef]
- Xu, J.; Gordon, J.I. Honor thy symbionts. Proc. Natl. Acad. Sci. USA 2003, 100, 10452–10459. [Google Scholar] [CrossRef]
- Eckburg, P.B.; Bik, E.M.; Bernstein, C.N.; Purdom, E.; Dethlefsen, L.; Sargent, M.; Gill, S.R.; Nelson, K.E.; Relman, D.A. Diversity of the human intestinal microbial flora. Science 2005, 308, 1635–1638. [Google Scholar] [CrossRef]
- Tremaroli, V.; Bäckhed, F. Functional interactions between the gut microbiota and host metabolism. Nature 2012, 489, 242–249. [Google Scholar] [CrossRef]
- Gevers, D.; Knight, R.; Petrosino, J.F.; Huang, K.; McGuire, A.L.; Birren, B.W.; Nelson, K.E.; White, O.; Methé, B.A.; Huttenhower, C. The Human Microbiome Project: A community resource for the healthy human microbiome. PLoS Biol. 2012, 10, e1001377. [Google Scholar] [CrossRef]
- Simenhoff, M.L.; Dunn, S.R.; Zollner, G.P.; Fitzpatrick, M.E.; Emery, S.M.; Sandine, W.E.; Ayres, J.W. Biomodulation of the toxic and nutritional effects of small bowel bacterial overgrowth in end-stage kidney disease using freeze-dried Lactobacillus acidophilus. Min. Electrolyte Metab. 1996, 22, 92–96. [Google Scholar]
- Hida, M.; Aiba, Y.; Sawamura, S.; Suzuki, N.; Satoh, T.; Koga, Y. Inhibition of the accumulation of uremic toxins in the blood and their precursors in the feces after oral administration of Lebenin, a lactic acid bacteria preparation, to uremic patients undergoing hemodialysis. Nephron 1996, 74, 349–355. [Google Scholar (V体育2025版)] [CrossRef]
- Vaziri, N.D.; Wong, J.; Pahl, M.; Piceno, Y.M.; Yuan, J.; DeSantis, T.Z.; Ni, Z.; Nguyen, T.-H.; Andersen, G.L. Chronic kidney disease alters intestinal microbial flora. Kidney Int. 2013, 83, 308–315. [Google Scholar] [CrossRef] [PubMed]
- Wong, J.; Piceno, Y.M.; DeSantis, T.Z.; Pahl, M.; Andersen, G.L.; Vaziri, N.D. Expansion of urease- and uricase-containing, indole and p-cresol-forming and contraction of short-chain fatty acid-producing intestinal microbiota in ESRD. Am. J. Nephrol. 2014, 39, 230–237. [Google Scholar] [CrossRef]
- Ramezani, A.; Massy, Z.A.; Meijers, B.; Evenepoel, P.; Vanholder, R.; Raj, D.S. Role of the Gut Microbiome in Uremia: A Potential Therapeutic Target. Am. J. Kidney Dis. 2016, 67, 483–498. [Google Scholar] [CrossRef]
- Meyer, T.W.; Hostetter, T.H. Uremia. N. Engl. J. Med. 2007, 357, 1316–1325. ["VSports手机版" Google Scholar] [CrossRef] [PubMed]
- Duranton, F.; Cohen, G.; De Smet, R.; Rodriguez, M.; Jankowski, J.; Vanholder, R.; Argiles, A.; European Uremic Toxin Work Group. Normal and pathologic concentrations of uremic toxins. J. Am. Soc. Nephrol. 2012, 23, 1258–1270. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.Y.; Chen, D.Q.; Chen, L.; Liu, J.R.; Vaziri, N.D.; Guo, Y.; Zhao, Y.Y. Microbiome–metabolome reveals the contribution of gut–kidney axis on kidney disease. J. Transl. Med. 2019, 17, 5. [Google Scholar] [CrossRef]
- Vanholder, R.; Glorieux, G.; De Smet, R.; Lameire, N. New insights in uremic toxins. Kidney Int. 2003, 63, S6–S10. [Google Scholar] [CrossRef]
- Gryp, T.; Vanholder, R.; Vaneechoutte, M.; Glorieux, G. p-Cresyl Sulfate. Toxins 2017, 9, 52. [Google Scholar] [CrossRef]
- Mair, R.D.; Sirich, T.L.; Plummer, N.S.; Meyer, T.W. Characteristics of Colon-Derived Uremic Solutes. Clin. J. Am. Soc. Nephrol. 2018, 13, 1398–1404. [Google Scholar] [CrossRef]
- Vanholder, R.; De Smet, R.; Glorieux, G.; Argilés, A.; Baurmeister, U.; Brunet, P.; Clark, W.; Cohen, G.; De Deyn, P.P.; Deppisch, R.; et al. Review on uremic toxins: Classification, concentration, and interindividual variability. Kidney Int. 2003, 63, 1934–1943. [Google Scholar] [CrossRef]
- Suchy-Dicey, A.M.; Laha, T.; Hoofnagle, A.; Newitt, R.; Sirich, T.L.; Meyer, T.W.; Thummel, K.E.; Yanez, N.D.; Himmelfarb, J.; Weiss, N.S.; et al. Tubular Secretion in CKD. J. Am. Soc. Nephrol. 2016, 27, 2148–2155. ["V体育平台登录" Google Scholar] [CrossRef]
- Masereeuw, R.; Mutsaers, H.A.; Toyohara, T.; Abe, T.; Jhawar, S.; Sweet, D.H.; Lowenstein, J. The kidney and uremic toxin removal: Glomerulus or tubule? Semin. Nephrol. 2014, 34, 191–208. [V体育安卓版 - Google Scholar] [CrossRef]
- Palmer, S.C.; Rabindranath, K.S.; Craig, J.C.; Roderick, P.J.; Locatelli, F.; Strippoli, G.F. High-flux versus low-flux membranes for end-stage kidney disease. Cochrane Database Syst. Rev. 2012, 2012, CD005016. [Google Scholar] [CrossRef]
- Barreto, F.C.; Barreto, D.V.; Liabeuf, S.; Meert, N.; Glorieux, G.; Temmar, M.; Choukroun, G.; Vanholder, R.; Massy, Z.A.; European Uremic Toxin Work Group (EUTox). Serum indoxyl sulfate is associated with vascular disease and mortality in chronic kidney disease patients. Clin. J. Am. Soc. Nephrol. 2009, 4, 1551–1558. [Google Scholar] [CrossRef] [PubMed]
- Yamamoto, H.; Tsuruoka, S.; Ioka, T.; Ando, H.; Ito, C.; Akimoto, T.; Fujimura, A.; Asano, Y.; Kusano, E. Indoxyl sulfate stimulates proliferation of rat vascular smooth muscle cells. Kidney Int. 2006, 69, 1780–1785. [Google Scholar (VSports注册入口)] [CrossRef] [PubMed]
- Dou, L.; Jourde-Chiche, N.; Faure, V.; Cerini, C.; Berland, Y.; Dignat-George, F.; Brunet, P. The uremic solute indoxyl sulfate induces oxidative stress in endothelial cells. J. Thromb. Haemost. 2007, 5, 1302–1308. ["VSports注册入口" Google Scholar] [CrossRef]
- Lin, C.-J.; Pan, C.-F.; Liu, H.-L.; Chuang, C.-K.; Jayakumar, T.; Wang, T.-J.; Chen, H.-H.; Wu, C.-J. The role of protein-bound uremic toxins on peripheral artery disease and vascular access failure in patients on hemodialysis. Atherosclerosis 2012, 225, 173–179. [VSports在线直播 - Google Scholar] [CrossRef] [PubMed]
- Mozar, A.; Louvet, L.; Godin, C.; Mentaverri, R.; Brazier, M.; Kamel, S.; Massy, Z.A. Indoxyl sulphate inhibits osteoclast differentiation and function. Nephrol. Dial. Transplant. 2012, 27, 2176–2181. ["VSports" Google Scholar] [CrossRef]
- Barreto, F.C.; Barreto, D.V.; Canziani, M.E.F.; Tomiyama, C.; Higa, A.; Mozar, A.; Glorieux, G.; Vanholder, R.; Massy, Z.A.; De Carvalho, A.B. Association between indoxyl sulfate and bone histomorphometry in pre-dialysis chronic kidney disease patients. Braz. J. Nephrol. 2014, 36, 289–296. [Google Scholar] [CrossRef]
- Nii-Kono, T.; Iwasaki, Y.; Uchida, M.; Fujieda, A.; Hosokawa, A.; Motojima, M.; Yamato, H.; Kurokawa, K.; Fukagawa, M. Indoxyl sulfate induces skeletal resistance to parathyroid hormone in cultured osteoblastic cells. Kidney Int. 2007, 71, 738–743. [Google Scholar (VSports)] [CrossRef]
- Lin, C.-J.; Pan, C.-F.; Chuang, C.-K.; Liu, H.-L.; Sun, F.-J.; Wang, T.-J.; Chen, H.-H.; Wu, C.-J. Association of Indoxyl Sulfate With Fibroblast Growth Factor 23 in Patients With Advanced Chronic Kidney Disease. Am. J. Med. Sci. 2014, 347, 370–376. [Google Scholar] [CrossRef]
- Guldris, S.C.; Parra, E.G.; Amenós, A.C. Gut microbiota in chronic kidney disease. Nefrología 2017, 37, 9–19. [Google Scholar] [CrossRef]
- Lekawanvijit, S.; Adrahtas, A.; Kelly, D.J.; Kompa, A.R.; Wang, B.H.; Krum, H. Does indoxyl sulfate, a uraemic toxin, have direct effects on cardiac fibroblasts and myocytes? Eur. Heart J. 2010, 31, 1771–1779. [Google Scholar] [CrossRef]
- Aoki, K.; Teshima, Y.; Kondo, H.; Saito, S.; Fukui, A.; Fukunaga, N.; Nawata, T.; Shimada, T.; Takahashi, N.; Shibata, H. Role of Indoxyl Sulfate as a Predisposing Factor for Atrial Fibrillation in Renal Dysfunction. J. Am. Heart Assoc. 2015, 4, e002023. [VSports注册入口 - Google Scholar] [CrossRef]
- Chiang, C.-K.; Tanaka, T.; Inagi, R.; Fujita, T.; Nangaku, M. Indoxyl sulfate, a representative uremic toxin, suppresses erythropoietin production in a HIF-dependent manner. Lab. Investig. 2011, 91, 1564–1571. [VSports - Google Scholar] [CrossRef] [PubMed]
- Nangaku, M.; Mimura, I.; Yamaguchi, J.; Higashijima, Y.; Wada, T.; Tanaka, T. Role of Uremic Toxins in Erythropoiesis-Stimulating Agent Resistance in Chronic Kidney Disease and Dialysis Patients. J. Ren. Nutr. 2015, 25, 160–163. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, M.S.E.; Abed, M.; Voelkl, J.; Lang, F. Triggering of suicidal erythrocyte death by uremic toxin indoxyl sulfate. BMC Nephrol. 2013, 14, 244. [Google Scholar] [CrossRef] [PubMed]
- Bammens, B.; Evenepoel, P.; Keuleers, H.; Verbeke, K.; Vanrenterghem, Y. Free serum concentrations of the protein-bound retention solute p-cresol predict mortality in hemodialysis patients. Kidney Int. 2006, 69, 1081–1087. ["VSports在线直播" Google Scholar] [CrossRef]
- Meijers, B.K.; Claes, K.; Bammens, B.; de Loor, H.; Viaene, L.; Verbeke, K.; Kuypers, D.R.; Vanrenterghem, Y.; Evenepoel, P. p-Cresol and cardiovascular risk in mild-to-moderate kidney disease. Clin. J. Am. Soc. Nephrol. 2010, 5, 1182–1189. [Google Scholar] [CrossRef] [PubMed]
- Sato, E.; Mori, T.; Mishima, E.; Suzuki, A.; Sugawara, S.; Kurasawa, N.; Saigusa, D.; Miura, D.; Morikawa-Ichinose, T.; Saito, R.; et al. Metabolic alterations by indoxyl sulfate in skeletal muscle induce uremic sarcopenia in chronic kidney disease. Sci. Rep. 2016, 6, 36618. ["VSports手机版" Google Scholar] [CrossRef]
- Vanholder, R.; Schepers, E.; Pletinck, A.; Nagler, E.V.; Glorieux, G. The uremic toxicity of indoxyl sulfate and p-cresyl sulfate: A systematic review. J. Am. Soc. Nephrol. 2014, 25, 1897–1907. [Google Scholar] [CrossRef]
- Mishima, E.; Fukuda, S.; Kanemitsu, Y.; Saigusa, D.; Mukawa, C.; Asaji, K.; Matsumoto, Y.; Tsukamoto, H.; Tachikawa, T.; Tsukimi, T.; et al. Canagliflozin reduces plasma uremic toxins and alters the intestinal microbiota composition in a chronic kidney disease mouse model. Am. J. Physiol. Physiol. 2018, 315, F824–F833. [V体育2025版 - Google Scholar] [CrossRef]
- March, D.S.; Jones, A.; Bishop, N.C.; Burton, J. The Efficacy of Prebiotic, Probiotic, and Synbiotic Supplementation in Modulating Gut-Derived Circulatory Particles Associated With Cardiovascular Disease in Individuals Receiving Dialysis: A Systematic Review and Meta-analysis of Randomized Controlled Trials. J. Ren. Nutr. 2020, 30, 347–359. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, T.T.U.; Kim, H.W.; Kim, W. Effects of Probiotics, Prebiotics, and Synbiotics on Uremic Toxins, Inflammation, and Oxidative Stress in Hemodialysis Patients: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. J. Clin. Med. 2021, 10, 4456. [VSports在线直播 - Google Scholar] [CrossRef] [PubMed]
- Wang, F.; Jiang, H.; Shi, K.; Ren, Y.; Zhang, P.; Cheng, S. Gut bacterial translocation is associated with microinflammation in end-stage renal disease patients. Nephrology 2012, 17, 733–738. ["V体育安卓版" Google Scholar] [CrossRef] [PubMed]
- Sun, J.; Axelsson, J.; Machowska, A.; Heimbürger, O.; Bárány, P.; Lindholm, B.; Lindström, K.; Stenvinkel, P.; Qureshi, A.R. Biomarkers of Cardiovascular Disease and Mortality Risk in Patients with Advanced CKD. Clin. J. Am. Soc. Nephrol. 2016, 11, 1163–1172. [Google Scholar] [CrossRef] [PubMed]
- Rossi, M.; Campbell, K.L.; Johnson, D.W.; Stanton, T.; Vesey, D.A.; Coombes, J.S.; Weston, K.S.; Hawley, C.M.; McWhinney, B.C.; Ungerer, J.P.; et al. Protein-bound uremic toxins, inflammation and oxidative stress: A cross-sectional study in stage 3-4 chronic kidney disease. Arch. Med. Res. 2014, 45, 309–317. [Google Scholar] [CrossRef]
- Inal, M.; Kanbak, G.; Sen, S.; Akyüz, F.; Sunal, E. Antioxidant status and lipid peroxidation in hemodialysis patients undergoing erythropoietin and erythropoietin-vitamin E combined therapy. Free Radic Res. 1999, 31, 211–216. [Google Scholar] [CrossRef]
- Locatelli, F.; Canaud, B.; Eckardt, K.; Stenvinkel, P.; Wanner, C.; Zoccali, C. Oxidative stress in end-stage renal disease: An emerging threat to patient outcome. Nephrol. Dial. Transplant. 2003, 18, 1272–1280. ["V体育官网" Google Scholar] [CrossRef]
- El Mesallamy, F.A.F.; Elhefnawy, K.A.N.; El Said, H.H. Plasma Retinol and Malondialdehyde Levels among Hemodialysis Patients. IJSR 2015, 4, 193–200. [Google Scholar]
- Morena, M.; Delbosc, S.; Dupuy, A.M.; Canaud, B.; Cristol, J.P. Overproduction of reactive oxygen species in end-stage renal disease patients: A potential component of hemodialysis-associated inflammation. Hemodial. Int. 2005, 9, 37–46. [Google Scholar] [CrossRef]
- Atamer, A.; Kocyigit, Y.; A Ecder, S.; Selek, S.; Ilhan, N.; Ecder, T.; Atamer, Y. Effect of oxidative stress on antioxidant enzyme activities, homocysteine and lipoproteins in chronic kidney disease. J. Nephrol. 2008, 21, 924–930. [VSports手机版 - Google Scholar]
- Yilmaz, M.I.; Saglam, M.; Caglar, K.; Cakir, E.; Sonmez, A.; Ozgurtas, T.; Aydin, A.; Eyileten, T.; Ozcan, O.; Acikel, C.; et al. The determinants of endothelial dysfunction in CKD: Oxidative stress and asymmetric dimethylarginine. Am. J. Kidney Dis. 2006, 47, 42–50. [Google Scholar] [CrossRef]
- Xu, G.; Luo, K.; Liu, H.; Huang, T.; Fang, X.; Tu, W. The progress of inflammation and oxidative stress in patients with chronic kidney disease. Ren. Fail. 2015, 37, 45–49. ["V体育ios版" Google Scholar] [CrossRef] [PubMed]
- Hatakka, K.; Martio, J.; Korpela, M.; Herranen, M.; Poussa, T.; Laasanen, T.; Saxelin, M.; Vapaatalo, H.; Moilanen, E.; Korpela, R. Effects of probiotic therapy on the activity and activation of mild rheumatoid arthritis—A pilot study. Scand. J. Rheumatol. 2003, 32, 211–215. ["V体育官网" Google Scholar] [CrossRef] [PubMed]
- Lamprecht, M.; Bogner, S.; Schippinger, G.; Steinbauer, K.; Fankhauser, F.; Hallstroem, S.; Schuetz, B.; Greilberger, J.F. Probiotic supplementation affects markers of intestinal barrier, oxidation, and inflammation in trained men. Ann. Nutr. Metabol. 2012, 61, 329. [Google Scholar (VSports注册入口)]
Weekly Frequency and Duration of the Hemodialysis Procedure | Number of Patients |
---|---|
3 × 4 h | 21 |
3 × 3 h and 30 min | 4 |
2 × 4 h | 5 |
Kidney Disease | Number of Patients |
---|---|
Chronic glomerulonephritis | 13 |
Diabetic nephropathy | 6 |
Hypertensive nephroangiosclerosis | 6 |
Autosomal dominant polycystic disease | 3 |
Other | 2 |
Indoxyl Sulfate ng/mL (Baseline) | Indoxyl Sulfate ng/mL (Week 8) | p-Cresyl Sulfate pg/mL (Baseline) | p-Cresyl Sulfate pg/mL (Week 8) | |
---|---|---|---|---|
mean ± SD | 212.89 ± 208.59 | 47.08 ± 3.24 | 29.26 ± 58.32 | 6.40 ± 0.79 |
95% confidence intervals | 135.00–290.78 | 45.87–48.30 | 7.48–51.04 | 6.10–6.70 |
min. | 42.48 | 40.94 | 6.17 | 6.17 |
max. | 1012.28 | 54.14 | 265.00 | 8.43 |
SEM | 38.08 | 0.59 | 10.64 | 0.14 |
p-value | p < 0.001 (paired-samples t-test) | p = 0.041 (paired-samples t-test) |
IL-6 pg/mL Before Taking a Synbiotic | IL-6 pg/mL after Intake | MDA pg/mL before Intake | MDA pg/mL after Intake | |
---|---|---|---|---|
mean ± SD | 13.84 ± 2.02 | 9.14 ± 1.67 | 1430.33 ± 583.42 | 1003.47 ± 518.37 |
95% confidence intervals | 13.08–14.59 | 8.52–9.77 | 1212.48–1648.19 | 809.91–1197.04 |
min. | 9.32 | 6.19 | 7.07 | 114.58 |
max. | 22.46 | 11.72 | 2227.85 | 2046.74 |
SEM | 0.37 | 0.30 | 106.51 | 94.64 |
p-value | p < 0.001 (paired-samples t-test) | p < 0.001 (paired-samples t-test) |
Weekly Frequency and Duration of HD Procedure | Parameters Before and After Synbiotic Intake | n | Mean ± SD | p-Value * |
---|---|---|---|---|
3 × 4 h | IS ng/mL before | 21 | 159.88 ± 150.925 | 0.003 |
IS ng/mL after | 47.56 ± 3.38 | |||
p-CS pg/ml before | 21 | 14.3 ± 7.74 | 0.001 | |
p-CS pg/mL after | 6.25 ± 0.66 | |||
IL-6 pg/mL before | 21 | 13.65 ± 1.26 | 0.001 | |
IL-6 pg/mL after | 9.16 ± 1.78 | |||
MDA pg/mL before | 21 | 1307.09 ± 617.18 | 0.001 | |
MDA pg/mL after | 422.37 ± 592.07 | |||
3 × 3 h and 30 min | IS ng/mL before | 4 | 407.19 ± 406.44 | 0.176 |
IS ng/mL after | 47.40 ± 2.41 | |||
p-CS pg/ml before | 4 | 16.64 ±7.14 | 0.058 | |
p-CS pg/mL after | 6.28 ± 0.46 | |||
IL-6 pg/mL before | 4 | 15.05 ± 5.09 | 0.109 | |
IL-6 pg/mL after | 8.82 ± 1.51 | |||
MDA pg/mL before | 4 | 1657.88 ± 529.77 | 0.012 | |
MDA pg/mL after | 163.42 ± 326.85 | |||
2 × 4 h | IS ng/mL before | 5 | 280.10 ± 139.68 | 0.019 |
IS ng/mL after | 44.84 ± 2.72 | |||
p-CS pg/ml before | 5 | 102.23 ± 127.81 | 0.173 | |
p-CS pg/mL after | 7.14 ± 1.19 | |||
IL-6 pg/mL before | 5 | 13.66 ± 0.80 | 0.002 | |
IL-6 pg/mL after | 9.32 ± 1.57 | |||
MDA pg/mL before | 5 | 1765.90 ± 283.70 | 0.191 | |
MDA pg/mL after | 1047.47 ± 976.30 |
Blood Parameters | Mean | n | Std. Deviation | Std. Error Mean | p-Value * |
---|---|---|---|---|---|
HGB g/L before intake HGB g/L after intake | 102.56 | 30 | 15.35 | 2.80 | 0.293 |
100.30 | 17.46 | 3.18 | |||
RBC 1012/L before intake RBC 1012/L after intake | 3.45 | 30 | 0.59 | 0.10 | 0.142 |
3.33 | 0.69 | 0.10 | |||
WBC 109/L before intake WBC 109/L after intake | 8.54 | 30 | 3.17 | 0.57 | 0.05 |
7.62 | 2.07 | 0.37 | |||
PLT 109/L before intake PLT 109/L after intake | 218.9 | 30 | 120.17 | 21.9 | 0.711 |
214.9 | 103.2 | 18.84 | |||
Urea mmol/L before intake Urea mmol/L after intake | 22.97 | 30 | 5.55 | 1.01 | 0.068 |
21.5 | 3.51 | 0.64 | |||
Creatinine µmol/L before intake Creatinine µmol/L after intake | 743.5 | 30 | 224.11 | 40.91 | 0.136 |
720.6 | 214.45 | 39.15 | |||
T.protein g/L before intake T.protein g/L after intake | 68.33 | 30 | 6.77 | 1.23 | 0.025 |
66.46 | 5.8 | 1.06 | |||
K mmol/L before intake K mmol/L after intake | 5.45 | 30 | 0.85 | 0.15 | 0.031 |
5.2 | 0.88 | 0.16 | |||
T.Ca mmol/L before intake T.Ca mmol/L after intake | 2.31 | 30 | 0.22 | 0.04 | 0.239 |
2.29 | 0.23 | 0.04 | |||
P mmol/L before intake P mmol/L after intake | 1.86 | 30 | 0.54 | 0.09 | 0.339 |
1.96 | 0.53 | 0.09 | |||
Fe µmol/L before intake Fe µmol/L after intake | 8.54 | 30 | 2.91 | 0.53 | 0.294 |
9.12 | 2.8 | 0.51 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kuskunov, T.; Tilkiyan, E.; Doykov, D.; Boyanov, K.; Bivolarska, A.; Hristov, B. The Effect of Synbiotic Supplementation on Uremic Toxins, Oxidative Stress, and Inflammation in Hemodialysis Patients—Results of an Uncontrolled Prospective Single-Arm Study. Medicina 2023, 59, 1383. https://doi.org/10.3390/medicina59081383
Kuskunov T, Tilkiyan E, Doykov D, Boyanov K, Bivolarska A, Hristov B. The Effect of Synbiotic Supplementation on Uremic Toxins, Oxidative Stress, and Inflammation in Hemodialysis Patients—Results of an Uncontrolled Prospective Single-Arm Study. Medicina. 2023; 59(8):1383. https://doi.org/10.3390/medicina59081383
Chicago/Turabian StyleKuskunov, Teodor, Eduard Tilkiyan, Daniel Doykov, Krasimir Boyanov, Anelia Bivolarska, and Bozhidar Hristov. 2023. "The Effect of Synbiotic Supplementation on Uremic Toxins, Oxidative Stress, and Inflammation in Hemodialysis Patients—Results of an Uncontrolled Prospective Single-Arm Study" Medicina 59, no. 8: 1383. https://doi.org/10.3390/medicina59081383
APA StyleKuskunov, T., Tilkiyan, E., Doykov, D., Boyanov, K., Bivolarska, A., & Hristov, B. (2023). The Effect of Synbiotic Supplementation on Uremic Toxins, Oxidative Stress, and Inflammation in Hemodialysis Patients—Results of an Uncontrolled Prospective Single-Arm Study. Medicina, 59(8), 1383. https://doi.org/10.3390/medicina59081383