"VSports app下载" Immunotherapy Strategies for Gastrointestinal Stromal Tumor
"> Figure 1
Immunotherapies in GIST. (A) Cytokine Therapy: Peginterferon alpha-2b is a cytokine-based therapy that is used in combination with imatinib to treat stage III/IV GIST. It functions by presenting an antigen cocktail to an antigen presenting cell (APC) to induce an IL-12 mediated TH1 immune response. The TH1 response secretes interferon-gamma and activates anti-tumoral immune cells. (B–E) Immune Checkpoint Inhibitors: (B) Pembrolizumab, Nivolumab, and Spartalizumab are programmed cell death protein-1 (PD1) inhibitors, preventing the PD1 and PDL1 interaction that leads to immune suppression and evasion of the immune system by cancer cells. (C) Ipilimumab is a CTLA-4 antibody, inhibiting the receptor’s function of sending inhibitory signals to T cells. (D) Epacodostat inhibits indoleamine-2,3-dioxygenase (IDO), an enzyme that decreases immune surveillance by downregulating NK and CD8 cells while upregulating T-regs. (E) Axitinib inhibits VEGF, thereby inhibiting the immunosuppressive function of VEGF. (F) Anti-KIT Antibodies: microtubule destabilizing maytansinoid (LOP628) and SR1 are monoclonal antibodies able to slow the growth of GIST via downregulation of KIT. (G) Cellular Therapy: Anti-KIT chimeric antigen receptor (CAR) T cells bind to GIST tumor cells leading to cell lysis. (H) Bi-specific monoclonal antibodies: binds to a somatostatin receptor (SSTR2) on tumor cells and CD3 to trigger a potent cytotoxic T cell response.
">
V体育官网入口 - Abstract
:Simple Summary
Gastrointestinal stromal tumors (GIST) are the most common type of gastrointestinal sarcomas. Recent treatment advancements have led to a significant improvement in the survival of patients living with GIST V体育官网入口. Nevertheless, patients with metastatic GIST will eventually require multiple lines of treatment. The use of immunotherapies could potentially fill the role of such treatments and potentiate the current therapies. This article reviews the mechanism by which the immune system interacts with GIST and discusses several studies on the use of immunotherapies in GIST.Abstract
Gastrointestinal stromal tumors (GIST) are the most common mesenchymal soft tissue sarcoma of the gastrointestinal tract. The management of locally advanced or metastatic unresectable GIST involves detecting KIT, PDGFR, or other molecular alterations targeted by imatinib and other tyrosine kinase inhibitors. The role of immunotherapy in soft tissue sarcomas is growing fast due to multiple clinical and pre-clinical studies with no current standard of care. The potential therapies include cytokine-based therapy, immune checkpoint inhibitors, anti-KIT monoclonal antibodies, bi-specific monoclonal antibodies, and cell-based therapies. Here we provide a comprehensive review of the immunotherapeutic strategies for GIST. Keywords: gastrointestinal stromal tumors; GIST; immunotherapy; checkpoint inhibitors; antibodies; lymphocytes; cytokine .1. Introduction
2. Disease Biology
2.1. Principles of Tumor Immunology
2.2. GIST Cellular Immunology
2.3. Imatinib and the Immune System
3. Immunotherapies in GIST
3.1. Cytokine-Based Therapy
3.2. Immune Checkpoint Inhibitors
3.3. Anti-KIT Antibodies
3.4. Bi-Specific Monoclonal Antibodies
3.5. Cellular Therapy
V体育官网入口 - 4. Discussion
5. Conclusions
"V体育ios版" Author Contributions
"V体育官网" Funding
"V体育安卓版" Conflicts of Interest
References
- Burch, J.; Ahmad, I. Cancer, Gastrointestinal Stromal (GIST); StatPearls: Treasure Island, FL, USA, 2020. [Google Scholar (V体育平台登录)]
- Costa, P.A.; Hana, C.K.A.; Balaji, N.C.; Skryd, A.F.; Valdes, B.N.; Minjares, R.O.; Barreto-Coelho, P.; Espejo-Freire, A.P.; Hakim, M.O.; Jonczak, E.; et al. Dose escalation of ripretinib can lead to response in advanced gastrointestinal stromal tumor patients refractory to the standard dose: A report of two cases. Gastrointestinal. Stromal Tumor 2021, 4, 1. [VSports - Google Scholar] [CrossRef]
- Nishida, T.; Blay, J.-Y.; Hirota, S.; Kitagawa, Y.; Kang, Y.-K. The standard diagnosis, treatment, and follow-up of gastrointestinal stromal tumors based on guidelines. Gastric Cancer 2016, 19, 3–14. [Google Scholar] [CrossRef] [PubMed]
- Demetri, G.D.; Von Mehren, M.; Antonescu, C.R.; DeMatteo, R.P.; Ganjoo, K.N.; Maki, R.G.; Pisters, P.W.; Raut, C.P.; Riedel, R.F.; Schuetze, S.; et al. NCCN task force report: Update on the management of patients with gastrointestinal stromal tumors. J. Natl. Compr. Cancer Netw. 2010, 8, S1–S41, quiz S42–44. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schaefer, I.M.; Marino-Enriquez, A.; Fletcher, J.A. What is new in gastrointestinal stromal tumor? Adv. Anat. Pathol. 2017, 24, 259–267. [Google Scholar] [CrossRef] [PubMed]
- Tan, Y.; Trent, J.C.; Wilky, B.A.; Kerr, D.A.; Rosenberg, A.E. Current status of immunotherapy for gastrointestinal stromal tumor. Cancer Gene Ther. 2017, 24, 130–133. [Google Scholar] [CrossRef] [PubMed]
- Heinrich, M.C.; Owzar, K.; Corless, C.L.; Hollis, D.; Borden, E.C.; Fletcher, C.D.; Ryan, C.W.; Von Mehren, M.; Blanke, C.D.; Rankin, C.; et al. Correlation of kinase genotype and clinical outcome in the North American intergroup phase III trial of imatinib mesylate for treatment of advanced gastrointestinal stromal tumor: CALGB 150105 study by cancer and leukemia group B and southwest oncology group. J. Clin. Oncol. 2008, 26, 5360–5367. [VSports - Google Scholar] [CrossRef] [Green Version]
- Nannini, M.; Biasco, G.; Astolfi, A.; Pantaleo, M.A. An overview on molecular biology of KIT/PDGFRA wild type (WT) gastrointestinal stromal tumors (GIST). J. Med. Genet. 2013, 50, 653–661. [Google Scholar] [CrossRef]
- Casali, P.G.; Zalcberg, J.; Le Cesne, A.; Reichardt, P.; Blay, J.-Y.; Lindner, L.; Judson, I.R.; Schöffski, P.; Leyvraz, S.; Italiano, A.; et al. Ten-year progression-free and overall survival in patients with unresectable or metastatic GI stromal tumors: Long-term analysis of the European Organisation for Research and Treatment of Cancer, Italian Sarcoma Group, and Australasian Gastrointestinal Trials Group intergroup phase III randomized trial on imatinib at two dose levels. J. Clin. Oncol. 2017, 35, 1713–1720. [Google Scholar] [CrossRef]
- Trent, J.C.; Subramanian, M.P. Managing GIST in the imatinib era: Optimization of adjuvant therapy. Expert Rev. Anticancer Ther. 2014, 14, 1445–1459. [Google Scholar] [CrossRef]
- Vadakara, J.; von Mehren, M. Gastrointestinal stromal tumors. Hematol. Clin. N. Am. 2013, 27, 905–920. [Google Scholar] [CrossRef] [Green Version]
- Tan, Y.; Garcia-Buitrago, M.T.; Trent, J.C.; Rosenberg, A.E. The immune system and gastrointestinal stromal tumor. Curr. Opin. Oncol. 2015, 27, 338–342. [VSports手机版 - Google Scholar] [CrossRef] [PubMed]
- Pandya, P.H.; Murray, M.E.; Pollok, K.E.; Renbarger, J.L. The immune system in cancer pathogenesis: Potential therapeutic approaches. J. Immunol. Res. 2016, 2016, 4273943. [Google Scholar (VSports在线直播)] [CrossRef]
- Olszanski, A.J. Principles of immunotherapy. J. Natl. Compr. Cancer Netw. 2015, 13, 670–672. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, D.S.; Mellman, I. Oncology meets immunology: The cancer-immunity cycle. Immunity 2013, 39, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Dunn, G.P.; Bruce, A.T.; Ikeda, H.; Old, L.J.; Schreiber, R.D. Cancer immunoediting: From immunosurveillance to tumor escape. Nat. Immunol. 2002, 3, 991–998. ["V体育平台登录" Google Scholar] [CrossRef] [PubMed]
- Van Dongen, M.; Savage, N.D.; Jordanova, E.S.; Bruijn, I.H.B.-D.; Walburg, K.V.; Ottenhoff, T.H.; Hogendoorn, P.; Van Der Burg, S.H.; Gelderblom, H.; van Hall, T. Anti-inflammatory M2 type macrophages characterize metastasized and tyrosine kinase inhibitor-treated gastrointestinal stromal tumors. Int. J. Cancer 2010, 127, 899–909. [V体育ios版 - Google Scholar] [CrossRef]
- Cameron, S.; Gieselmann, M.; Blaschke, M.; Ramadori, G.; Fuzesi, L. Immune cells in primary and metastatic gastrointesti-nal stromal tumors (GIST). Int. J. Clin. Exp. Pathol. 2014, 7, 3563–3579. [Google Scholar]
- Rusakiewicz, S.; Semeraro, M.; Sarabi, M.; Desbois, M.; Locher, C.; Mendez, R.; Vimond, N.; Concha, A.; Garrido, F.; Isambert, N.; et al. Immune infiltrates are prognostic factors in localized gastrointestinal stromal tumors. Cancer Res. 2013, 73, 3499–3510. ["VSports注册入口" Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ayers, M.; Lunceford, J.; Nebozhyn, M.; Murphy, E.; Loboda, A.; Kaufman, D.R.; Albright, A.; Cheng, J.D.; Kang, S.P.; Shankaran, V.; et al. IFN-γ–related mRNA profile predicts clinical response to PD-1 blockade. J. Clin. Investig. 2017, 127, 2930–2940. [Google Scholar] [CrossRef]
- Vitiello, G.A.; Bowler, T.G.; Liu, M.; Medina, B.D.; Zhang, J.Q.; Param, N.J.; Loo, J.K.; Goldfeder, R.L.; Chibon, F.; Rossi, F.; et al. Differential immune profiles distinguish the mutational subtypes of gastrointestinal stromal tumor. J. Clin. Investig. 2019, 129, 1863–1877. [Google Scholar] [CrossRef]
- Indio, V.; Astolfi, A.; Urbini, M.; Nannini, M.; Pantaleo, M.A. Genetics and treatment of gastrointestinal stromal tumors with immune checkpoint inhibitors: What do we know? Pharmacogenomics 2020, 21, 231–234. [Google Scholar] [CrossRef]
- Chen, L.L.; Chen, X.; Choi, H.; Sang, H.; Chen, L.C.; Zhang, H.; Gouw, L.; Andtbacka, R.H.; Chan, B.K.; Rodesch, C.K.; et al. Exploiting antitumor immunity to overcome relapse and improve remission duration. Cancer Immunol. Immunother. 2012, 61, 1113–1124. [Google Scholar] [CrossRef] [Green Version]
- Balachandran, V.P.; Cavnar, M.J.; Zeng, S.; Bamboat, Z.M.; Ocuin, L.M.; Obaid, H.; Sorenson, E.C.; Popow, R.; Ariyan, C.; Rossi, F.; et al. Imatinib potentiates antitumor T cell responses in gastrointestinal stromal tumor through the inhibition of Ido. Nat. Med. 2011, 17, 1094–1100. [Google Scholar] [CrossRef] [PubMed]
- Delahaye, N.F.; Rusakiewicz, S.; Martins, I.; Ménard, C.; Roux, S.; Lyonnet, L.; Paul, P.; Sarabi, M.; Chaput, N.; Semeraro, M.; et al. Alternatively spliced NKp30 isoforms affect the prognosis of gastrointestinal stromal tumors. Nat. Med. 2011, 17, 700–707. [Google Scholar] [CrossRef] [PubMed]
- Florou, V.; Rosenberg, A.E.; Wieder, E.; Komanduri, K.V.; Kolonias, D.; Uduman, M.; Castle, J.C.; Buell, J.S.; Trent, J.C.; Wilky, B.A. Angiosarcoma patients treated with immune checkpoint inhibitors: A case series of seven patients from a single institution. J. Immunother. Cancer 2019, 7, 213. [Google Scholar] [CrossRef] [Green Version]
- Farag, S.; Verschoor, A.J.; Bosma, J.W.; Gelderblom, H.; Kerst, J.M.; Sleijfer, S.; Steeghs, N. Imatinib-induced agranulocytosis in patients with gastrointestinal stromal tumors. J. Clin. Pharmacol. 2015, 55, 920–925. [Google Scholar] [CrossRef]
- Bertucci, F.; Finetti, P.; Mamessier, E.; Pantaleo, M.A.; Astolfi, A.; Ostrowski, J.; Birnbaum, D. PDL1 expression is an independent prognostic factor in localized GIST. OncoImmunology 2015, 4, e1002729. [V体育2025版 - Google Scholar] [CrossRef] [PubMed] [Green Version]
- Seifert, A.M.; Zeng, S.; Zhang, J.Q.; Kim, T.; Cohen, N.; Beckman, M.J.; Medina, B.D.; Maltbaek, J.H.; Loo, J.K.; Crawley, M.H.; et al. PD-1/PD-L1 blockade enhances T-cell activity and antitumor efficacy of imatinib in gastrointestinal stromal tumors. Clin. Cancer Res. 2017, 23, 454–465. [Google Scholar] [CrossRef] [Green Version]
- PDR001 Plus Imatinib for Metastatic or Unresectable GIST. Available online: VSports注册入口 - https://clinicaltrials.gov/ct2/show/NCT03609424 (accessed on 19 May 2021).
- D’Angelo, S.P.; Shoushtari, A.N.; Keohan, M.L.; Dickson, M.A.; Gounder, M.M.; Chi, P.; Loo, J.K.; Gaffney, L.; Schneider, L.; Patel, Z.; et al. combined kit and ctla-4 blockade in patients with refractory gist and other advanced sarcomas: A phase Ib study of dasatinib plus ipilimumab. Clin. Cancer Res. 2017, 23, 2972–2980. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Epacadostat and Pembrolizumab in Patients With GIST. Available online: https://clinicaltrials.gov/ct2/show/NCT03291054 (accessed on 19 May 2021).
- Singh, A.S.; Chmielowski, B.; Hecht, J.R.; Rosen, L.S.; Chow, W.A.; Wang, X.; Brackert, S.; Adame, C.; Bovill, J.; Schink, E.; et al. A randomized phase II study of nivolumab monotherapy versus nivolumab combined with ipilimumab in advanced gastrointestinal stromal tumor (GIST). J. Clin. Oncol. 2019, 37, 11017. [Google Scholar] [CrossRef]
- Edris, B.; Willingham, S.B.; Weiskopf, K.; Volkmer, A.K.; Volkmer, J.-P.; Mühlenberg, T.; Montgomery, K.D.; Contreras-Trujillo, H.; Czechowicz, A.; Fletcher, J.A.; et al. Anti-KIT monoclonal antibody inhibits imatinib-resistant gastrointestinal stromal tumor growth. Proc. Natl. Acad. Sci. USA 2013, 110, 3501–3506. [Google Scholar] [CrossRef] [Green Version]
- Abrams, T.J.; Connor, A.; Fanton, C.P.; Cohen, S.B.; Huber, T.; Miller, K.; Hong, E.E.; Niu, X.; Kline, J.; Ison-Dugenny, M.; et al. preclinical antitumor activity of a novel anti-c-KIT antibody-drug conjugate against mutant and wild-type c-KIT-positive solid tumors. Clin. Cancer Res. 2018, 24, 4297–4308. [Google Scholar (VSports注册入口)] [CrossRef] [PubMed] [Green Version]
- Zhao, W.Y.; Zhuang, C.; Xu, J.; Wang, M.; Zhang, Z.Z.; Tu, L.; Wang, C.J.; Ling, T.L.; Cao, H.; Zhang, Z.G. Somatostatin re-ceptors in gastrointestinal stromal tumors: New prognostic biomarker and potential therapeutic strategy. Am. J. Transl. Res. 2014, 6, 831–840. [V体育安卓版 - Google Scholar]
- A Study of XmAb®18087 in Subjects with NET and GIST. Available online: https://clinicaltrials.gov/ct2/show/NCT03411915 (accessed on 19 May 2021).
- Katz, S.C.; Burga, R.A.; Naheed, S.; Licata, L.A.; Thorn, M.; Osgood, D.; Nguyen, C.T.; Espat, N.J.; Fletcher, J.A.; Junghans, R.P. Anti-KIT designer T cells for the treatment of gastrointestinal stromal tumor. J. Transl. Med. 2013, 11, 46. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Siozopoulou, V.; Domen, A.; Zwaenepoel, K.; Van Beeck, A.; Smits, E.; Pauwels, P.; Marcq, E. Immune checkpoint inhibitory therapy in sarcomas: Is there light at the end of the tunnel? Cancers 2021, 13, 360. ["V体育安卓版" Google Scholar] [CrossRef]
- Arshad, J.; Roberts, A.; Ahmed, J.; Cotta, J.; Pico, B.; Kwon, D.; Trent, J. Utility of circulating tumor DNA in the management of patients with GI stromal tumors: Analysis of 243 patients. J. Clin. Oncol. Precis. Oncol. 2020, 4, 66–73. [Google Scholar] [CrossRef]
Trial | Phase | Drug | GIST Population | Results |
---|---|---|---|---|
NCT00585221 | Phase 2 | Peginterferon alfa-2b plus Imatinib | Stage III/IV | 7 PR and 1 CR (100%). 2 (25%) patients progressed during the 3.6 m follow-up. |
NCT01643278 | Phase 1 | Dasatinib plus Ipilimumab | Advanced/unresectable refractory to imatinib and sunitinib | 7 PR (53%), 3 SD (23%), and 3 PD (23%), with a median duration of response of 82 days |
NCT02636725 | Phase 2 | Axitinib plus Pembrolizumab | Unresectable and refractory to first-line therapy | No response seen in GIST patients (n = 3) |
NCT03609424 | Phase 1b/2 | Spartalizumab (PDR001) | Metastatic or unresectable | Ongoing |
NCT03411915 | Phase 1 | XmAb®18087 | Advanced or metastatic refractory to all FDA-approved therapies | Ongoing |
NCT03291054 | Phase 2 | Epacadostat plus Pembrolizumab | Unresectable or metastatic refractory to imatinib and another TKI | Ongoing |
NCT02880020 | Phase 2 | Nivolumab Monotherapy versus Nivolumab Combined with Ipilimumab | Metastatic or Unresectable | Ongoing |
NCT03475953 | Phase 1/2 | Regorafenib with Avelumab | Metastatic or Unresectable | Ongoing |
NCT02406781 | Phase 2 | Pembrolizumab with metronomic cyclophosphamide | Metastatic or Unresectable after imatinib and sunitinib. | Ongoing |
NCT04258956 | Phase 2 | Avelumab with Axitinib | KIT or PDGFRA positive advanced or metastatic, with no more than 3 previous therapies, which must include imatinib and sunitinib | Ongoing |
NCT02834013 | Phase 2 | Nivolumab and Ipilimumab | Progressed in at least one line, and no further approved standard therapy that prolongs survival | Ongoing |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Arshad, J.; Costa, P.A.; Barreto-Coelho, P.; Valdes, B.N.; Trent, J.C. Immunotherapy Strategies for Gastrointestinal Stromal Tumor. Cancers 2021, 13, 3525. https://doi.org/10.3390/cancers13143525
Arshad J, Costa PA, Barreto-Coelho P, Valdes BN, Trent JC. Immunotherapy Strategies for Gastrointestinal Stromal Tumor. Cancers. 2021; 13(14):3525. https://doi.org/10.3390/cancers13143525
Chicago/Turabian StyleArshad, Junaid, Philippos A. Costa, Priscila Barreto-Coelho, Brianna Nicole Valdes, and Jonathan C. Trent. 2021. "Immunotherapy Strategies for Gastrointestinal Stromal Tumor" Cancers 13, no. 14: 3525. https://doi.org/10.3390/cancers13143525
APA StyleArshad, J., Costa, P. A., Barreto-Coelho, P., Valdes, B. N., & Trent, J. C. (2021). Immunotherapy Strategies for Gastrointestinal Stromal Tumor. Cancers, 13(14), 3525. https://doi.org/10.3390/cancers13143525