"VSports注册入口" The Hepatic Microenvironment and TRAIL-R2 Impact Outgrowth of Liver Metastases in Pancreatic Cancer after Surgical Resection
Knockdown of TRAIL-R2 in PancTu-I cells leads to reduced macroscopic liver metastases but higher numbers of small metastatic lesions after primary tumor resection in vivo. (A) ShRNA-mediated knockdown of TRAIL-R2 in PancTu-1 cells was verified on mRNA and protein level by (A) qRT-PCR or (B) Western blot. (A) The mRNA level of TRAIL-R2 was normalized to GAPDH mRNA level in control transfected (shCtrl) or TRAIL-R2 knockdown (shTR2) PancTu-I cells. Data present n-fold mRNA level of shCtrl PancTu-I cells. (B) A representative western blot. Actin levels were used as loading control. PancTu-I shCtrl or PancTu-I shTR2 cells were orthotopically inoculated in Severe Combined ImmunoDeficiency (SCID) beige mice and after 10 days primary tumors were resected by subtotal pancreatectomy. At 26 days post-surgery, metastatic burden in livers was assessed (C,D) macroscopically and (E) by immunofluorescence pan-cytokeratin staining of 3 tissue slides per animal. Disseminated tumor cells (DTC) and micrometastases were determined by counting Hoechst stained nuclei of pan-cytokeratin+ tumor cells. (F) Representative images of disseminated tumor cells (DTC; 1–10 cells), micrometastasis (10–100 cells), and macrometastasis (> 100 cells) are shown. Scale bars 25 µm (left), 50 µm (middle), 200 µm (right). Data represent mean ± SEM or absolute numbers of 9 (PancTu-I shCtrl) or 8 (PancTu-I shTR2) animals/group.
"> Figure 2Micrometastases of animals inoculated with PancTu-I shTR2 cells show lower proportion of Ki67+ tumor cells than micrometastases of animals inoculated with PancTu-I shCtrl cells. Proportions of Ki67+ PancTu-I shCtrl and PancTu-I shTR2 cells within (A) DTCs and (B) micrometastases were analyzed by immunofluorescence staining of Ki67. (C) Representative images of Ki67 staining of PancTu-I shCtrl and PancTu-I shTR2 liver micrometastases. Scale bars: 25 µm. Data represent the mean ± SEM or median values with quartiles (Q0.75 as upper, Q0.25 as lower deviation) of 9 animals/group; * = p < 0.05.
"> Figure 3Abdominal surgery triggers a local inflammatory response in the liver. No surgery as control (n = 4), explorative laparotomy (n = 4), or subtotal pancreatectomy (n = 8) was performed with SCID beige mice and mice were sacrificed 48 hours after surgery to determine inflammatory cytokines in liver tissue homogenisates by LEGENDplexTM multiplex analysis. Detected cytokine concentrations were normalized to protein levels of corresponding samples. Data represent the mean ± SEM of 4 or 8 animals/group; * = p < 0.05.
"> Figure 4In vitro coculture with M2-macrophages does not differentially affect growth of PancTu-I shCtrl and shTR2 cells. PancTu-I shCtrl or PancTu-I shTR2 cells were indirectly cocultured in absence (mono) or presence of M2-macrophages (+ M2-macrophages) for one week. After coculture, (A) vital cell numbers and (B) Ki67 status were analyzed. Vital cell numbers were obtained by counting living cells in a Neubauer counting chamber. Ki67 status was determined by immunocytochemical Ki67 staining. Proportion of Ki67+ cells was normalized to monocultured PancTu-I shCtrl cells. Data represent the mean ± SEM of 4–5 independent experiments.
"> Figure 5Surgery-mediated liver inflammation is accompanied by enhanced activation of HSCs into HMFs. No surgery as control (n = 4), explorative laparotomy (n = 4), or subtotal pancreatectomy (n = 8) was performed with SCID beige mice which were sacrificed 48 hours after surgery. RNA was isolated from snap-frozen liver tissues to determine mRNA levels of Desmin (marker for quiescent HSC), α-SMA, and Collagen 1A1 (Col1A1) (markers for HMF) by qRT-PCR. Gene expression of target genes was normalized to GAPDH gene expression. Afterwards, ratios of α-SMA to Desmin (A), as well as Col1A1 to Desmin (B), were calculated for each sample and plotted. Data represent the median and individual values from 4 and 8 animals, respectively.
"> Figure 6PancTu-I shTR2 cells show reduced cell growth in the presence of HSC in vitro. PancTu-I shCtrl or PancTu-I shTR2 cells were indirectly cocultured in the presence of HSC or HMF. After 6 days, (A) the vital cell number, (B) the proportion of PI+ cells, and (C) Ki67+ cells were determined. Vital cell numbers were obtained by counting living cells in a Neubauer counting chamber. The fraction of cells which underwent cell death was quantified by PI staining. The percentage of proliferating cells was determined by immunocytochemical Ki67 staining. (D) Representative images of Ki67 staining in PancTu-1 cells after different coculture conditions at 200-fold magnification. For extended coculture, HSC cocultured PancTu-I shCtrl and PancTu-I shTR2 cells were detached and re-seeded to extend the coculture either in the presence of HSC (HSC→HSC) or HMF (HSC→HMF). After another 6 days of coculture, (E) vital cell count and (F) the proportion of Ki67+ cells were assessed. The percentage of proliferating cells was determined by immunofluorescence Ki67-Alexa-488 staining. Data are expressed as median fluorescence intensity (MFI). Data represent the mean ± SEM of 3–5 independent experiments; * = p < 0.05.
"> Figure 7HSC-mediated growth suppression of PancTu-I shTR2 cells is CXCL-8/IL-8 dependent. Supernatants of PancTu-I shCtrl and PancTu-I shTR2 cells cocultured with HSC or HMF were analyzed for human CXCL-8/IL-8 levels by LEGENDplex multiplex analysis. (A) Detected CXCL-8/IL-8 concentrations were normalized to vital cell counts of corresponding PancTu-I cells. For blocking experiments, PancTu-I shCtrl and PancTu-I shTR2 cells were indirectly cocultured in the presence of HSC and treated with either 10 µg/mL control IgG1 or anti-CXCL-8/IL-8 antibody. After 6 days of coculture, (B) vital cell count and (C) the proportion of Ki67+ cells were determined. The percentage of proliferating cells was determined by immunofluorescence Ki67-Alexa-488 staining. Data are normalized to control group shCtrl + HSC + control IgG1. (D) Representative images of immunofluorescence Ki67 staining are shown. Scale Bars 100 µm. Data represent the mean ± SEM of 4–5 independent experiments; * = p < 0.05.
"> Figure 8HMF-mediated proliferation boost of PancTu-I cells is VEGF dependent. (A) RNA was isolated from HSC or HMF after 6 days of coculture with PDAC cells and mRNA levels of murine VEGF-A were analyzed by qRT-PCR. VEGF-A gene expression was normalized to GAPDH expression and normalized expression of HSC cocultured with PancTu-I shCtrl cells was set as 1. For blocking experiments, PancTu-I shCtrl or PancTu-I shTR2 cells were indirectly cocultured in the presence of HMF and treated with 10 µg/mL of either Rituximab as control or Aflibercept. After 6 days of coculture, (B) vital cell count and (C) the proportion of Ki67+ cells were determined. The percentage of proliferating cells was determined by immunofluorescence Ki67-Alexa-488 staining. Data are normalized to PancTu-I shCtrl cells + HMF treated with Rituximab. (D) Representative images of immunofluorescent Ki67 staining are shown. Scale Bars: 100 µm. Data represent the mean ± SEM of 4–5 independent experiments; * = p < 0.05.
">"VSports手机版" Abstract
Most patients with pancreatic ductal adenocarcinoma (PDAC) undergoing curative resection relapse within months, often with liver metastases V体育官网入口. The hepatic microenvironment determines induction and reversal of dormancy during metastasis. Both tumor growth and metastasis depend on the Tumor necrosis factor (TNF)-related apoptosis-inducing ligand-receptor 2 (TRAIL-R2). This study investigated the interplay of TRAIL-R2 and the hepatic microenvironment in liver metastases formation and the impact of surgical resection. Although TRAIL-R2-knockdown (PancTu-I shTR2) decreased local relapses and number of macroscopic liver metastases after primary tumor resection in an orthotopic PDAC model, the number of micrometastases was increased. Moreover, abdominal surgery induced liver inflammation involving activation of hepatic stellate cells (HSCs) into hepatic myofibroblasts (HMFs). In coculture with HSCs, proliferation of PancTu-I shTR2 cells was significantly lower compared to PancTu-I shCtrl cells, an effect still observed after switching coculture from HSC to HMF, mimicking surgery-mediated liver inflammation and enhancing cell proliferation. CXCL-8/IL-8 blockade diminished HSC-mediated growth inhibition in PancTu-I shTR2 cells, while Vascular Endothelial Growth Factor (VEGF) neutralization decreased HMF-mediated proliferation. Overall, this study points to an important role of TRAIL-R2 in PDAC cells in the interplay with the hepatic microenvironment during metastasis. Resection of primary PDAC seems to induce liver inflammation, which might contribute to outgrowth of liver metastases. Keywords: pancreatic ductal adenocarcinoma; liver microenvironment; liver metastasis; inflammation; surgery; TRAIL-R2 .1. Introduction
"VSports app下载" 2. Results
2.1. Knockdown of TRAIL-R2 in PancTu-I Cells Leads to Reduced Macroscopic Liver Metastases but Higher Numbers of Small Metastatic Lesions after Primary Tumor Resection in Vivo
2.2. Surgery Triggers a Local Inflammatory Response in the Liver in Vivo
VSports手机版 - 2.3. Growth Behavior of PancTu-I Cells with Differential TRAIL-R2 Expression is not Differentially Affected by M2-Macrophages in Vitro
2.4. Cell Growth of PancTu-I Cells with Diminished TRAIL-R2 Expression is Reduced in the Presence of HSC in Vitro (VSports最新版本)
2.5. HSC-Mediated Growth Suppression of PancTu-I shTR2 Cells is CXCL-8/IL-8 Dependent
2.6. HMF-Mediated Proliferation Boost of PancTu-I Cells is VEGF Dependent
3. Discussion
VSports - 4. Materials and Methods
4.1. Cell Lines and Cell Culture (VSports手机版)
4.2. Generation of M2-Like Polarized Macrophages
4.3. Indirect Coculture of M2-Macrophages and PDAC Cells
4.4. Indirect Coculture of Hepatic Stromal Cells and PDAC Cells
V体育平台登录 - 4.5. Blocking of VEGF and CXCL-8/IL-8 during Coculture
4.6. Determination of Viable Cell Number
4.7. Propidium-Iodide Staining
4.8. Immunocytochemistry Staining of Ki67
V体育ios版 - 4.9. Immunofluorescent Staining of Ki67
4.10. Detection of Cytokines in Cell Culture Supernatants
4.11. Detection of TRAIL-R2 Expression by Western Blot
4.12. Orthotopic Xenotransplantation of Human PDAC Cells and Tumor Resection
4.13. Laparotomy and Subtotal Pancreatectomy
4.14. Immunofluorescent Staining of FFPE Tissue Slides (VSports在线直播)
"V体育平台登录" 4.15. Protein Isolation and Cytokine Detection in Murine Liver Tissues
4.16. RNA Isolation and qRT-PCR
V体育2025版 - 4.17. Statistical Analysis
5. Conclusions
Supplementary Materials (VSports)
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
α-SMA | α-Smooth muscle actin |
CXCL-8/IL-8 | C-X-C Motif Chemokine Ligand 8/Interleukin-8 |
DTC | Disseminated tumor cell |
GAPDH | Glycerinaldehyd-3-phosphat-Dehydrogenase |
GM-CSF | Granulocyte-macrophage colony-stimulating factor |
HMF | M-HT |
HMFs | Hepatic myofibroblasts |
HSC | M1-4HSC |
HSCs | Hepatic stellate cells |
IFN-γ | Interferon-gamma |
IL-1β | Interleukin-1beta |
PDAC | Pancreatic ductal adenocarcinoma |
NSAIDs | Non-steroidal anti-inflammatory drugs |
TNF-α | Tumor necrosis factor α |
TRAIL | TNF-related apoptosis inducing ligand |
TRAIL-R2 | TNF-related apoptosis inducing ligand-receptor 2 |
VEGF | Vascular endothelial growth factor |
References
- Castellanos, J.A.; Merchant, N.B. Intensity of Follow-up after Pancreatic Cancer Resection. Ann. Surg. Oncol. 2014, 21, 747–751. [Google Scholar] [CrossRef]
- Sperti, C.; Pasquali, C.; Piccoli, A.; Pedrazzoli, S. Recurrence after resection for ductal adenocarcinoma of the pancreas. World J. Surg. 1997, 21, 195–200. [Google Scholar] [CrossRef] [PubMed]
- Rhim, A.D.; Thege, F.I.; Santana, S.M.; Lannin, T.B.; Saha, T.N.; Tsai, S.; Maggs, L.R.; Kochman, M.L.; Ginsberg, G.G.; Lieb, J.G.; et al. Detection of Circulating Pancreas Epithelial Cells in Patients With Pancreatic Cystic Lesions. Gastroenterology 2014, 146, 647–651. [Google Scholar] [CrossRef]
- Rhim, A.D.; Mirek, E.T.; Aiello, N.M.; Maitra, A.; Bailey, J.M.; McAllister, F.; Reichert, M.; Beatty, G.L.; Rustgi, A.K.; Vonderheide, R.H.; et al. EMT and dissemination precede pancreatic tumor formation. Cell 2012, 148, 349–361. [VSports在线直播 - Google Scholar] [CrossRef]
- McDonald, O.G.; Li, X.; Saunders, T.; Tryggvadottir, R.; Mentch, S.J.; Warmoes, M.O.; Word, A.E.; Carrer, A.; Salz, T.H.; Natsume, S.; et al. Epigenomic reprogramming during pancreatic cancer progression links anabolic glucose metabolism to distant metastasis. Nat. Genet. 2017, 49, 367–376. [Google Scholar] [CrossRef] [PubMed]
- Roe, J.S.; Hwang, C.I.; Somerville, T.D.D.; Milazzo, J.P.; Lee, E.J.; Da Silva, B.; Maiorino, L.; Tiriac, H.; Young, C.M.; Miyabayashi, K.; et al. Enhancer Reprogramming Promotes Pancreatic Cancer Metastasis. Cell 2017, 170, 875–888.e20. [Google Scholar] [CrossRef]
- Lenk, L.; Pein, M.; Will, O.; Gomez, B.; Viol, F.; Hauser, C.; Egberts, J.H.; Gundlach, J.P.; Helm, O.; Tiwari, S.; et al. The hepatic microenvironment essentially determines tumor cell dormancy and metastatic outgrowth of pancreatic ductal adenocarcinoma. Oncoimmunology 2018, 7, e1368603. [Google Scholar] [CrossRef] [PubMed]
- Nielsen, S.R.; Quaranta, V.; Linford, A.; Emeagi, P.; Rainer, C.; Santos, A.; Ireland, L.; Sakai, T.; Sakai, K.; Kim, Y.-S.; et al. Macrophage-secreted granulin supports pancreatic cancer metastasis by inducing liver fibrosis. Nat. Cell Biol. 2016, 18, 549. [VSports手机版 - Google Scholar] [CrossRef] [PubMed]
- Costa-Silva, B.; Aiello, N.M.; Ocean, A.J.; Singh, S.; Zhang, H.; Thakur, B.K.; Becker, A.; Hoshino, A.; Mark, M.T.; Molina, H.; et al. Pancreatic cancer exosomes initiate pre-metastatic niche formation in the liver. Nat. Cell Biol. 2015, 17, 816. [Google Scholar] [CrossRef]
- Grünwald, B.; Harant, V.; Schaten, S.; Frühschütz, M.; Spallek, R.; Höchst, B.; Stutzer, K.; Berchtold, S.; Erkan, M.; Prokopchuk, O.; et al. Pancreatic Premalignant Lesions Secrete Tissue Inhibitor of Metalloproteinases-1, Which Activates Hepatic Stellate Cells Via CD63 Signaling to Create a Premetastatic Niche in the Liver. Gastroenterology 2016, 151, 1011–1024.e7. ["V体育安卓版" Google Scholar] [CrossRef] [PubMed]
- Tohme, S.; Yazdani, H.O.; Al-Khafaji, A.B.; Chidi, A.P.; Loughran, P.; Mowen, K.; Wang, Y.; Simmons, R.L.; Huang, H.; Tsung, A. Neutrophil extracellular traps promote the development and progression of liver metastases after surgical stress. Cancer Res. 2016, 76, 1367–1380. [Google Scholar] [CrossRef] [PubMed]
- Weiskirchen, R.; Tacke, F. Cellular and molecular functions of hepatic stellate cells in inflammatory responses and liver immunology. Hepatobiliary Surg. Nutr. 2014, 3, 344–363. [Google Scholar] [PubMed]
- Bataller, R.; Brenner, D. Liver fibrosis. J. Clin. Investig. 2005, 115, 209–218. [Google Scholar] [CrossRef]
- Retsky, M.; Demicheli, R.; Hrushesky, W.J.M.; Forget, P.; De Kock, M.; Gukas, I.; Rogers, R.A.; Baum, M.; Sukhatme, V.; Vaidya, J.S. Reduction of breast cancer relapses with perioperative non-steroidal anti-inflammatory drugs: New findings and a review. Curr. Med. Chem. 2013, 20, 4163–4176. [Google Scholar] [CrossRef] [PubMed]
- Krall, J.A.; Reinhardt, F.; Mercury, O.A.; Pattabiraman, D.R.; Brooks, M.W.; Dougan, M.; Lambert, A.W.; Bierie, B.; Ploegh, H.L.; Dougan, S.K.; et al. The systemic response to surgery triggers the outgrowth of distant immune-controlled tumors in mouse models of dormancy. Sci. Transl. Med. 2018, 10, eaan3464. [Google Scholar] [CrossRef]
- Grzelak, C.A.; Ghajar, C.M. Metastasis ‘systems’ biology: How are macro-environmental signals transmitted into microenvironmental cues for disseminated tumor cells? Curr. Opin. Cell Biol. 2017, 48, 79–86. [Google Scholar] [CrossRef] [PubMed]
- Yang, C.; Bork, U.; Schölch, S.; Kulu, Y.; Kaderali, L.; Uta, L.; Kahlert, C.; Weitz, J.; Rahbari, N.N. Postoperative course and prognostic value of circulating angiogenic cytokines after pancreatic cancer resection. Oncotarget 2017, 8, 72315–72323. [Google Scholar] [CrossRef] [PubMed]
- Walczak, H.; Miller, R.E.; Ariail, K.; Gliniak, B.; Griffith, T.S.; Kubin, M.; Chin, W.; Jones, J.; Woodward, A.; Le, T.; et al. Tumoricidal activity of tumor necrosis factor-related apoptosis-inducing ligand in vivo. Nat. Med. 1999, 5, 157–163. [Google Scholar] [CrossRef]
- Ashkenazi, A.; Pai, R.C.; Fong, S.; Leung, S.; Lawrence, D.A.; Marsters, S.A.; Blackie, C.; Chang, L.; McMurtrey, A.E.; Hebert, A.; et al. Safety and antitumor activity of recombinant soluble Apo2 ligand. J. Clin. Investig. 1999, 104, 155–162. [Google Scholar] [CrossRef] [PubMed]
- Pan, G.; Rourke, K.; Chinnaiyan, A.M.; Gentz, R.; Ebner, R.; Ni, J.; Dixit, V.M. The Receptor for the Cytotoxic Ligand TRAIL. Science 1997, 276, 111–113. [Google Scholar] [CrossRef] [PubMed]
- Walczak, H.; Degli-Esposti, M.A.; Johnson, R.S.; Smolak, P.J.; Waugh, J.Y.; Boiani, N.; Timour, M.S.; Gerhart, M.J.; Schooley, K.A.; Smith, C.A.; et al. TRAIL-R2: A novel apoptosis-mediating receptor for TRAIL. EMBO J. 1997, 16, 5386–5397. [Google Scholar] [CrossRef] [PubMed]
- Azijli, K.; Yuvaraj, S.; Peppelenbosch, M.P.; Wurdinger, T.; Dekker, H.; Joore, J.; van Dijk, E.; Quax, W.J.; Peters, G.J.; de Jong, S.; et al. Kinome profiling of non-canonical TRAIL signaling reveals RIP1-Src-STAT3 dependent invasion in resistant non-small cell lung cancer cells. J. Cell Sci. 2012, 125, 4651–4661. [Google Scholar] [CrossRef] [PubMed]
- Trauzold, A.; Wermann, H.; Arlt, A.; Schütze, S.; Schäfer, H.; Oestern, S.; Röder, C.; Ungefroren, H.; Lampe, E.; Heinrich, M.; et al. CD95 and TRAIL receptor-mediated activation of protein kinase C and NF-kappaB contributes to apoptosis resistance in ductal pancreatic adenocarcinoma cells. Oncogene 2001, 20, 4258–4269. [Google Scholar (V体育ios版)] [CrossRef]
- von Karstedt, S.; Conti, A.; Nobis, M.; Montinaro, A.; Hartwig, T.; Lemke, J.; Legler, K.; Annewanter, F.; Campbell, A.D.; Taraborrelli, L.; et al. Cancer cell-autonomous TRAIL-R signaling promotes KRAS-Driven cancer progression, invasion, and metastasis. Cancer Cell 2015, 27, 561–573. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Zhou, J.-Y.; Wei, W.-Z.; Wu, G.S. Activation of the Akt survival pathway contributes to TRAIL resistance in cancer cells. PLoS ONE 2010, 5, e10226. [Google Scholar] [CrossRef]
- Secchiero, P.; Melloni, E.; Heikinheimo, M.; Mannisto, S.; Di Pietro, R.; Iacone, A.; Zauli, G. TRAIL regulates normal erythroid maturation through an ERK-dependent pathway. Blood 2004, 103, 517–522. [Google Scholar (V体育平台登录)] [CrossRef]
- Siegmund, D.; Klose, S.; Zhou, D.; Baumann, B.; Roder, C.; Kalthoff, H.; Wajant, H.; Trauzold, A. Role of caspases in CD95L- and TRAIL-induced non-apoptotic signalling in pancreatic tumour cells. Cell. Signal. 2007, 19, 1172–1184. [Google Scholar] [CrossRef]
- Zauli, G.; Sancilio, S.; Cataldi, A.; Sabatini, N.; Bosco, D.; Di Pietro, R. PI-3K/Akt and NF-kappaB/IkappaBalpha pathways are activated in Jurkat T cells in response to TRAIL treatment. J. Cell. Physiol. 2005, 202, 900–911. [Google Scholar (V体育官网入口)] [CrossRef]
- Varfolomeev, E.; Maecker, H.; Sharp, D.; Lawrence, D.; Renz, M.; Vucic, D.; Ashkenazi, A. Molecular determinants of kinase pathway activation by Apo2 ligand/tumor necrosis factor-related apoptosis-inducing ligand. J. Biol. Chem. 2005, 280, 40599–40608. [Google Scholar] [CrossRef]
- Azijli, K.; Weyhenmeyer, B.; Peters, G.J.; de Jong, S.; Kruyt, F.A. Non-canonical kinase signaling by the death ligand TRAIL in cancer cells: Discord in the death receptor family. Cell Death Differ. 2013, 20, 858–868. [Google Scholar] [CrossRef]
- Trauzold, A.; Siegmund, D.; Schniewind, B.; Sipos, B.; Egberts, J.; Zorenkov, D.; Emme, D.; Röder, C.; Kalthoff, H.; Wajant, H. TRAIL promotes metastasis of human pancreatic ductal adenocarcinoma. Oncogene 2006, 25, 7434–7439. [Google Scholar] [CrossRef]
- Ishimura, N.; Isomoto, H.; Bronk, S.F.; Gores, G.J. Trail induces cell migration and invasion in apoptosis-resistant cholangiocarcinoma cells. Am. J. Physiol. Gastrointest. Liver Physiol. 2006, 290, G129–G136. [Google Scholar] [CrossRef] [PubMed]
- Hoogwater, F.J.H.; Nijkamp, M.W.; Smakman, N.; Steller, E.J.A.; Emmink, B.L.; Westendorp, B.F.; Raats, D.A.E.; Sprick, M.R.; Schaefer, U.; Van Houdt, W.J.; et al. Oncogenic K-Ras Turns Death Receptors Into Metastasis-Promoting Receptors in Human and Mouse Colorectal Cancer Cells. Gastroenterology 2010, 138, 2357–2367. [Google Scholar] [CrossRef]
- Hartwig, T.; Montinaro, A.; Von Karstedt, S.; El-bahrawy, M.A.; Quezada, S.A.; Walczak, H. The TRAIL-Induced Cancer Secretome Promotes a Tumor-Supportive Immune Microenvironment via CCR2. Mol. Cell 2017, 65, 730–742.e5. [Google Scholar (VSports手机版)] [CrossRef]
- Fritsche, H.; Heilmann, T.; Tower, R.J.; Hauser, C.; von Au, A.; El-Sheikh, D.; Campbell, G.M.; Alp, G.; Schewe, D.; Hübner, S.; et al. TRAIL-R2 promotes skeletal metastasis in a breast cancer xenograft mouse model. Oncotarget 2015, 6, 9502–9516. ["V体育官网" Google Scholar] [CrossRef]
- Haselmann, V.; Kurz, A.; Bertsch, U.; Hübner, S.; Olempska-Müller, M.; Fritsch, J.; Häsler, R.; Pickl, A.; Fritsche, H.; Annewanter, F.; et al. Nuclear death receptor trail-r2 inhibits maturation of let-7 and promotes proliferation of pancreatic and other tumor cells. Gastroenterology 2014, 146, 278–290. [Google Scholar] [CrossRef]
- Egberts, J.H.; Schniewind, B.; Patzold, M.; Kettler, B.; Tepel, J.; Kalthoff, H.; Trauzold, A. Dexamethasone reduces tumor recurrence and metastasis after pancreatic tumor resection in SCID mice. Cancer Biol. Ther. 2008, 7, 1044–1050. [Google Scholar] [CrossRef] [PubMed]
- Egberts, J.-H.; Cloosters, V.; Noack, A.; Schniewind, B.; Thon, L.; Klose, S.; Kettler, B.; von Forstner, C.; Kneitz, C.; Tepel, J.; et al. Anti-tumor necrosis factor therapy inhibits pancreatic tumor growth and metastasis. Cancer Res. 2008, 68, 1443–1450. [Google Scholar] [CrossRef] [PubMed]
- Legler, K.; Hauser, C.; Egberts, J.-H.; Willms, A.; Heneweer, C.; Boretius, S.; Röcken, C.; Glüer, C.-C.; Becker, T.; Kluge, M.; et al. The novel TRAIL-receptor agonist APG350 exerts superior therapeutic activity in pancreatic cancer cells. Cell Death Dis. 2018, 9, 445. [Google Scholar] [CrossRef] [PubMed]
- Aguirre-Ghiso, J.A. Models, mechanisms and clinical evidence for cancer dormancy. Nat. Rev. Cancer 2007, 7, 834–846. [Google Scholar] [CrossRef] [PubMed]
- Sosa, M.S.; Bragado, P.; Aguirre-Ghiso, J.A. Mechanisms of disseminated cancer cell dormancy: An awakening field. Nat. Rev. Cancer 2014, 14, 611–622. [Google Scholar] [CrossRef] [PubMed]
- You, Q.; Holt, M.; Yin, H.; Li, G.; Hu, C.J.; Ju, C. Role of hepatic resident and infiltrating macrophages in liver repair after acute injury. Biochem. Pharmacol. 2013, 86, 836–843. [V体育ios版 - Google Scholar] [CrossRef]
- Van der Bij, G.J.; Oosterling, S.J.; Meijer, S.; Beelen, R.H.J.; van Egmond, M. Therapeutic potential of Kupffer cells in prevention of liver metastases outgrowth. Immunobiology 2005, 210, 259–265. [Google Scholar] [CrossRef]
- Matsumura, H.; Kondo, T.; Ogawa, K.; Tamura, T.; Fukunaga, K.; Murata, S.; Ohkohchi, N. Kupffer cells decrease metastasis of colon cancer cells to the liver in the early stage. Int. J. Oncol. 2014, 45, 2303–2310. [Google Scholar (V体育平台登录)] [CrossRef] [PubMed]
- Naito, M.; Hasegawa, G.; Ebe, Y.; Yamamoto, T. Differentiation and function of Kupffer cells. Med. Electron Microsc. 2004, 37, 16–28. [Google Scholar] [CrossRef] [PubMed]
- Lemke, J.; Noack, A.; Adam, D.; Tchikov, V.; Bertsch, U.; Röder, C.; Schütze, S.; Wajant, H.; Kalthoff, H.; Trauzold, A. TRAIL signaling is mediated by DR4 in pancreatic tumor cells despite the expression of functional DR5. J. Mol. Med. 2010, 88, 729–740. [Google Scholar] [CrossRef]
- Badia, J.M.; Whawell, S.A.; Scott-Coombes, D.M.; Abel, P.D.; Williamson, R.C.N.; Thompson, J.N. Peritoneal and systemic cytokine response to laparotomy. BJS 1996, 83, 347–348. [Google Scholar] [CrossRef]
- Aosasa, S.; Ono, S.; Mochizuki, H.; Tsujimoto, H.; Osada, S.; Takayama, E.; Seki, S.; Hiraide, H. Activation of monocytes and endothelial cells depends on the severity of surgical stress. World J. Surg. 2000, 24, 10–16. [Google Scholar] [CrossRef]
- Sethi, G.; Sung, B.; Aggarwal, B.B. TNF: A master switch for inflammation to cancer. Front. Biosci. 2008, 13, 5094–5107. [V体育平台登录 - Google Scholar] [CrossRef]
- Mantovani, A.; Barajon, I.; Garlanda, C. IL-1 and IL-1 regulatory pathways in cancer progression and therapy. Immunol. Rev. 2018, 281, 57–61. [Google Scholar] [CrossRef]
- Wu, Y.; Zhong, Z.; Huber, J.; Bassi, R.; Finnerty, B.; Corcoran, E.; Li, H.; Navarro, E.; Balderes, P.; Jimenez, X.; et al. Anti-vascular endothelial growth factor receptor-1 antagonist antibody as a therapeutic agent for cancer. Clin. Cancer Res. 2006, 12, 6573–6584. [Google Scholar] [CrossRef] [PubMed]
- Aqbi, H.F.; Wallace, M.; Sappal, S.; Payne, K.K.; Manjili, M.H. IFN-gamma orchestrates tumor elimination, tumor dormancy, tumor escape, and progression. J. Leukoc. Biol. 2018, 103, 1219–1223. [Google Scholar] [CrossRef]
- Hong, I.-S. Stimulatory versus suppressive effects of GM-CSF on tumor progression in multiple cancer types. Exp. Mol. Med. 2016, 48, e242. [V体育安卓版 - Google Scholar] [CrossRef] [PubMed]
- Pommier, A.; Anaparthy, N.; Memos, N.; Kelley, Z.L.; Gouronnec, A.; Yan, R.; Auffray, C.; Albrengues, J.; Egeblad, M.; Iacobuzio-Donahue, C.A.; et al. Unresolved endoplasmic reticulum stress engenders immune-resistant, latent pancreatic cancer metastases. Science 2018, 360, eaao4908. [Google Scholar] [CrossRef] [PubMed]
- Albrengues, J.; Shields, M.A.; Ng, D.; Park, C.G.; Ambrico, A.; Poindexter, M.E.; Upadhyay, P.; Uyeminami, D.L.; Pommier, A.; Küttner, V.; et al. Neutrophil extracellular traps produced during inflammation awaken dormant cancer cells in mice. Science 2018, 361, eaao4227. [VSports注册入口 - Google Scholar] [CrossRef] [PubMed]
- Gundlach, J.-P.; Hauser, C.; Schlegel, F.M.; Boger, C.; Roder, C.; Rocken, C.; Becker, T.; Egberts, J.-H.; Kalthoff, H.; Trauzold, A. Cytoplasmic TRAIL-R1 is a positive prognostic marker in PDAC. BMC Cancer 2018, 18, 777. [Google Scholar] [CrossRef]
- Van Cutsem, E.; Peeters, M.; Bridgewater, J.; Cunningham, D.; Rivera, F.; Berry, S.; Kretzschmar, A.; Michael, M.; DiBartolomeo, M.; Mazier, M.-A.; et al. Safety and efficacy of first-line bevacizumab with FOLFOX, XELOX, FOLFIRI and fluoropyrimidines in metastatic colorectal cancer: The BEAT study. Ann. Oncol. 2009, 20, 1842–1847. [Google Scholar] [CrossRef]
- Kindler, H.L.; Niedzwiecki, D.; Hollis, D.; Sutherland, S.; Schrag, D.; Hurwitz, H.; Innocenti, F.; Mulcahy, M.F.; O’Reilly, E.; Wozniak, T.F.; et al. Gemcitabine Plus Bevacizumab Compared With Gemcitabine Plus Placebo in Patients With Advanced Pancreatic Cancer: Phase III Trial of the Cancer and Leukemia Group B (CALGB 80303). J. Clin. Oncol. 2010, 28, 3617–3622. ["V体育2025版" Google Scholar] [CrossRef]
- Rougier, P.; Riess, H.; Manges, R.; Karasek, P.; Humblet, Y.; Barone, C.; Santoro, A.; Assadourian, S.; Hatteville, L.; Philip, P.A. Randomised, placebo-controlled, double-blind, parallel-group phase III study evaluating aflibercept in patients receiving first-line treatment with gemcitabine for metastatic pancreatic cancer. Eur. J. Cancer 2013, 49, 2633–2642. [V体育ios版 - Google Scholar] [CrossRef]
- Forget, P.; Vandenhende, J.; Berliere, M.; Machiels, J.-P.; Nussbaum, B.; Legrand, C.; De Kock, M. Do Intraoperative Analgesics Influence Breast Cancer Recurrence After Mastectomy? A Retrospective Analysis. Anesth. Analg. 2010, 110, 1630–1635. [Google Scholar] [CrossRef]
- Helm, O.; Held-Feindt, J.; Grage-Griebenow, E.; Reiling, N.; Ungefroren, H.; Vogel, I.; Krüger, U.; Becker, T.; Ebsen, M.; Röcken, C.; et al. Tumor-associated macrophages exhibit pro- and anti-inflammatory properties by which they impact on pancreatic tumorigenesis. Int. J. Cancer 2014, 4, 843–861. [Google Scholar] [CrossRef] [PubMed]
- Hackert, T.; Ulrich, A.; Buchler, M.W. Borderline resectable pancreatic cancer. Cancer Lett. 2016, 375, 231–237. [Google Scholar] [CrossRef] [PubMed]
Target Gene | Sequence |
---|---|
Mouse α-SMA (Acta2) | F: 5’- ATG CAG AAG GAG ATC ACA GC -3’ R: 5’- CAG CTT CGT CGT ATT CCT GT -3’ |
Mouse Desmin | F: 5’- CAG GAG ATG GAA TAC CG -3’ R: 5’- GGC CAT CTC ATC CTT TAG GT -3’ |
Mouse Collagen 1A1 | F: 5‘ - ATG ATG CTA ACG TGG TTC GT - 3‘ R: 5‘ - TGG TTA GGG TCG ATC CAG TA - 3’ |
Mouse/human GAPDH | F: 5‘ - TCC ATG ACA ACT TTG GTA TCG TGG - 3’ R: 5‘ - GAC GCC TGC TTC ACC ACC TTC T - 3‘ |
Mouse VEGF-A | F: 5’- ACT GGA CCC TGG CTT TAC TG -3’ R: 5’- TCT GCT CTC CTT CTG TCG TG -3’ |
Human TRAIL-R2 | F: 5‘ - CAA TGG GGG AAG AAG AAG AA - 3’ R: 5’ - GTC CCA GCC TGT CCA TAG AT - 3’ |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
"V体育安卓版" Share and Cite
Miarka, L.; Hauser, C.; Helm, O.; Holdhof, D.; Beckinger, S.; Egberts, J.-H.; Gundlach, J.-P.; Lenk, L.; Rahn, S.; Mikulits, W.; et al. The Hepatic Microenvironment and TRAIL-R2 Impact Outgrowth of Liver Metastases in Pancreatic Cancer after Surgical Resection. Cancers 2019, 11, 745. https://doi.org/10.3390/cancers11060745
Miarka L, Hauser C, Helm O, Holdhof D, Beckinger S, Egberts J-H, Gundlach J-P, Lenk L, Rahn S, Mikulits W, et al. The Hepatic Microenvironment and TRAIL-R2 Impact Outgrowth of Liver Metastases in Pancreatic Cancer after Surgical Resection. Cancers. 2019; 11(6):745. https://doi.org/10.3390/cancers11060745
Chicago/Turabian StyleMiarka, Lauritz, Charlotte Hauser, Ole Helm, Dörthe Holdhof, Silje Beckinger, Jan-Hendrik Egberts, Jan-Paul Gundlach, Lennart Lenk, Sascha Rahn, Wolfgang Mikulits, and et al. 2019. "The Hepatic Microenvironment and TRAIL-R2 Impact Outgrowth of Liver Metastases in Pancreatic Cancer after Surgical Resection" Cancers 11, no. 6: 745. https://doi.org/10.3390/cancers11060745
APA StyleMiarka, L., Hauser, C., Helm, O., Holdhof, D., Beckinger, S., Egberts, J.-H., Gundlach, J.-P., Lenk, L., Rahn, S., Mikulits, W., Trauzold, A., & Sebens, S. (2019). The Hepatic Microenvironment and TRAIL-R2 Impact Outgrowth of Liver Metastases in Pancreatic Cancer after Surgical Resection. Cancers, 11(6), 745. https://doi.org/10.3390/cancers11060745