Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The . gov means it’s official. Federal government websites often end in . gov or . mil. Before sharing sensitive information, make sure you’re on a federal government site. VSports app下载.

Https

The site is secure. The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely. V体育官网.

. 1997 Dec 1;159(11):5661-70.

IL-11 regulates macrophage effector function through the inhibition of nuclear factor-kappaB

Affiliations
  • PMID: 9548510

IL-11 regulates macrophage effector function through the inhibition of nuclear factor-kappaB

W L Trepicchio et al. J Immunol. .

"VSports app下载" Abstract

Recombinant human IL-11 (rhIL-11) is an anti-inflammatory cytokine that can reduce the production of inflammatory mediators such as TNF-alpha, IL-1beta, IL-12, IL-6, and nitric oxide. Inhibition of proinflammatory cytokine production from activated macrophages was associated with a reduction in the levels of LPS-induced TNF-alpha, IL-1beta, IL-6, and IL-12 p40 mRNA. Analysis of rhIL-11 effects on transcription factors that activate proinflammatory cytokines demonstrated that the level of LPS-induced NF-kappaB binding activity in the nucleus of rhIL-11-treated peritoneal macrophages was significantly reduced. The block to NF-kappaB nuclear translocation correlated with the ability of rhIL-11 to maintain or increase protein levels of the inhibitors of NF-kappaB, IkappaB-alpha, and IkappaB-beta following LPS treatment. Furthermore, rhIL-11-treatment of LPS macrophages resulted in significant elevation of IkappaB-alpha and IkappaB-beta mRNA levels. These results suggest that the anti-inflammatory activity of rhIL-11 is mediated in part by inhibition of NF-kappaB-dependent transcriptional activation VSports手机版. Furthermore, these studies demonstrate for the first time the regulation of IkappaB-beta by an anti-inflammatory cytokine. Given the finding that inappropriate activation of NF-kappaB contributes to multiple inflammatory conditions, the ability of rhIL-11 to inhibit the binding activity of this pleiotropic transcription factor indicates that rhIL-11 has therapeutic potential in a wide range of diseases. .

PubMed Disclaimer

MeSH terms

LinkOut - more resources