VSports最新版本 - Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The . gov means it’s official. Federal government websites often end in . gov or . mil. Before sharing sensitive information, make sure you’re on a federal government site VSports app下载. .

Https

The site is secure. The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely V体育官网. .

. 2016 May 19:7:713.
doi: 10.3389/fmicb.2016.00713. eCollection 2016.

The Common Gut Microbe Eubacterium hallii also Contributes to Intestinal Propionate Formation

Affiliations

The Common Gut Microbe Eubacterium hallii also Contributes to Intestinal Propionate Formation

"VSports app下载" Christina Engels et al. Front Microbiol. .

"V体育2025版" Abstract

Eubacterium hallii is considered an important microbe in regard to intestinal metabolic balance due to its ability to utilize glucose and the fermentation intermediates acetate and lactate, to form butyrate and hydrogen. Recently, we observed that E. hallii is capable of metabolizing glycerol to 3-hydroxypropionaldehyde (3-HPA, reuterin) with reported antimicrobial properties. The key enzyme for glycerol to 3-HPA conversion is the cobalamin-dependent glycerol/diol dehydratase PduCDE which also utilizes 1,2-propanediol (1,2-PD) to form propionate. Therefore our primary goal was to investigate glycerol to 3-HPA metabolism and 1,2-PD utilization by E. hallii along with its ability to produce cobalamin. We also investigated the relative abundance of E. hallii in stool of adults using 16S rRNA and pduCDE based gene screening to determine the contribution of E. hallii to intestinal propionate formation. We found that E. hallii utilizes glycerol to produce up to 9 mM 3-HPA but did not further metabolize 3-HPA to 1,3-propanediol. Utilization of 1,2-PD in the presence and absence of glucose led to the formation of propanal, propanol and propionate VSports手机版. E. hallii formed cobalamin and was detected in stool of 74% of adults using 16S rRNA gene as marker gene (n = 325). Relative abundance of the E. hallii 16S rRNA gene ranged from 0 to 0. 59% with a mean relative abundance of 0. 044%. E. hallii PduCDE was detected in 63 to 81% of the metagenomes depending on which subunit was investigated beside other taxons such as Ruminococcus obeum, R. gnavus, Flavonifractor plautii, Intestinimonas butyriciproducens, and Veillonella spp. In conclusion, we identified E. hallii as a common gut microbe with the ability to convert glycerol to 3-HPA, a step that requires the production of cobalamin, and to utilize 1,2-PD to form propionate. Our results along with its ability to use a broad range of substrates point at E. hallii as a key species within the intestinal trophic chain with the potential to highly impact the metabolic balance as well as the gut microbiota/host homeostasis by the formation of different short chain fatty acids. .

Keywords: Eubacterium hallii; gut microbe; propanediol; propionate; reuterin V体育安卓版. .

PubMed Disclaimer

Figures

FIGURE 1
FIGURE 1
Glycerol and 1,2-propanediol metabolic pathways.
FIGURE 2
FIGURE 2
Growth (A), butyrate formation (B), glycerol utilization (C), and 3-HPA production (D) of Eubacterium hallii DSM 3353 in the presence of glycerol (mYCFA_gly), glucose (mYCFA_glc), glucose and glycerol (mYCFA_glc_gly), lactate (mYCFA_lac), and lactate and glycerol (mYCFA_lac_gly).
FIGURE 3
FIGURE 3
Growth (A), butyrate formation (B), glycerol utilization (C), and 3-HPA production (D) of E. hallii DSM 17630 in the presence of glycerol (mYCFA_gly), glucose (mYCFA_glc), glucose and glycerol (mYCFA_glc_gly), lactate (mYCFA_lac), and lactate and glycerol (mYCFA_lac_gly).
FIGURE 4
FIGURE 4
Growth (A), butyrate formation (B), 1,2-PD utilization (C), and propanal (D), propionate (E), and propanol (F) formation by E. hallii DSM 3353 in the presence of 1,2-PD (mYCFA_pd), glucose (mYCFA_glc), and glucose and 1,2-PD (mYCFA_pd_glc).
FIGURE 5
FIGURE 5
Growth (A), butyrate formation (B), 1,2-PD utilization (C), and propanal (D), propionate (E), and propanol (F) formation by E. hallii DSM 17630 in the presence of 1,2-PD (mYCFA_pd), glucose (mYCFA_glc), and glucose and 1,2-PD (mYCFA_pd_glc).
FIGURE 6
FIGURE 6
1,2-PD utilization and sum of propanal, propionate and propanol formed by E. hallii DSM 3353 (A) and DSM 17630 (B).
FIGURE 7
FIGURE 7
Species contributing glycerol/diol dehydratases to the metagenomes of 10 individuals with high (MG1–MG5) and low (MG6–MG10) abundance of E. hallii pduCDE; others, groups all species with low hits.

References

    1. Biagi E., Nylund L., Candela M., Ostan R., Bucci L., Pini E., et al. (2010). Through ageing, and beyond: gut microbiota and inflammatory status in seniors and centenarians. PLoS ONE 5:e10667 10.1371/journal.pone.0010667 - DOI - PMC - PubMed
    1. Boronat A., Aguilar J. (1981). Metabolism of L-fucose and L-rhamnose in Escherichia coli: differences in induction of propanediol oxidoreductase. J. Bacteriol. 147 181–185. - "V体育2025版" PMC - PubMed
    1. Buchfink B., Xie C., Huson D. H. (2015). Fast and sensitive protein alignment using DIAMOND. Nat. Methods 12 59–60. 10.1038/nmeth.3176 - VSports最新版本 - DOI - PubMed
    1. Casas I. A., Dobrogosz W. J. (2000). Validation of the probiotic concept: Lactobacillus reuteri confers broad-spectrum protection against disease in humans and animals. Microb. Ecol. Health D. 12 247–285. 10.1080/08910600050216246-1 - DOI
    1. Chassard C., Lacroix C. (2013). Carbohydrates and the human gut microbiota. Curr. Opin. Clin. Nutr. Metab. Care 16 453–460. 10.1097/MCO.0b013e3283619e63 - VSports - DOI - PubMed