limma powers differential expression analyses for RNA-sequencing and microarray studies
- PMID: 25605792
- PMCID: PMC4402510
- DOI: 10.1093/nar/gkv007
limma powers differential expression analyses for RNA-sequencing and microarray studies
Abstract
limma is an R/Bioconductor software package that provides an integrated solution for analysing data from gene expression experiments. It contains rich features for handling complex experimental designs and for information borrowing to overcome the problem of small sample sizes. Over the past decade, limma has been a popular choice for gene discovery through differential expression analyses of microarray and high-throughput PCR data. The package contains particularly strong facilities for reading, normalizing and exploring such data. Recently, the capabilities of limma have been significantly expanded in two important directions. First, the package can now perform both differential expression and differential splicing analyses of RNA sequencing (RNA-seq) data. All the downstream analysis tools previously restricted to microarray data are now available for RNA-seq as well. These capabilities allow users to analyse both RNA-seq and microarray data with very similar pipelines VSports手机版. Second, the package is now able to go past the traditional gene-wise expression analyses in a variety of ways, analysing expression profiles in terms of co-regulated sets of genes or in terms of higher-order expression signatures. This provides enhanced possibilities for biological interpretation of gene expression differences. This article reviews the philosophy and design of the limma package, summarizing both new and historical features, with an emphasis on recent enhancements and features that have not been previously described. .
© The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research V体育安卓版. .
Figures




References
-
- Smyth G. Limma: linear models for microarray data. In: Gentleman R., Carey V., Dudoit S., Irizarry R., Huber W., editors. Bioinformatics and Computational Biology Solutions Using R and Bioconductor. New York: Springer; 2005. pp. 397–420.
-
- Caiazzo M., Dell'Anno M.T., Dvoretskova E., Lazarevic D., Taverna S., Leo D., Sotnikova T.D., Menegon A., Roncaglia P., Colciago G., et al. Direct generation of functional dopaminergic neurons from mouse and human fibroblasts. Nature. 2011;476:224–227. - VSports在线直播 - PubMed
-
- Hubert F., Kinkel S., Crewther P., Cannon P., Webster K., Link M., Uibo R., O'Bryan M., Meager A., Forehan S., et al. Aire-deficient c57bl/6 mice mimicking the common human 13-base pair deletion mutation present with only a mild autoimmune phenotype. J. Immunol. 2009;182:3902–3918. - PubMed
Publication types
- "V体育ios版" Actions
MeSH terms
- "VSports app下载" Actions
- "V体育安卓版" Actions
LinkOut - more resources (V体育平台登录)
Full Text Sources
Other Literature Sources
Medical
Molecular Biology Databases
Miscellaneous