Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The VSports app下载. gov means it’s official. Federal government websites often end in . gov or . mil. Before sharing sensitive information, make sure you’re on a federal government site. .

Https

The site is secure. The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely V体育官网. .

. 2013 Feb 11;14(2):3834-59.
doi: 10.3390/ijms14023834.

Crosstalk between Oxidative Stress and SIRT1: Impact on the Aging Process (VSports注册入口)

Affiliations

Crosstalk between Oxidative Stress and SIRT1: Impact on the Aging Process

Antero Salminen et al. Int J Mol Sci. .

Abstract

Increased oxidative stress has been associated with the aging process. However, recent studies have revealed that a low-level oxidative stress can even extend the lifespan of organisms. Reactive oxygen species (ROS) are important signaling molecules, e. g. , being required for autophagic degradation. SIRT1, a class III protein deacetylase, is a crucial cellular survival protein, which is also involved in combatting oxidative stress. For instance, SIRT1 can stimulate the expression of antioxidants via the FoxO pathways. Moreover, in contrast to ROS, SIRT1 inhibits NF-κB signaling which is a major inducer of inflammatory responses, e. g. , with inflammasome pathway. Recent studies have demonstrated that an increased level of ROS can both directly and indirectly control the activity of SIRT1 enzyme. For instance, ROS can inhibit SIRT1 activity by evoking oxidative modifications on its cysteine residues. Decreased activity of SIRT1 enhances the NF-κB signaling, which supports inflammatory responses. This crosstalk between the SIRT1 and ROS signaling provokes in a context-dependent manner a decline in autophagy and a low-grade inflammatory phenotype, both being common hallmarks of ageing. We will review the major mechanisms controlling the signaling balance between the ROS production and SIRT1 activity emphasizing that this crosstalk has a crucial role in the regulation of the aging process VSports手机版. .

PubMed Disclaimer

Figures

Figure 1
Figure 1
A schematic figure depicting the crosstalk between ROS production and SIRT1 activity in the regulation of age-related pathology. (A) The concentration-dependent regulation of the lifespan by ROS. The upper part shows the hypothetical balance between the SIRT1 activity and the presence of ROS in the control of age-related changes. There seems to be an optimal level of cellular ROS production, which confers the most favorable benefits on the healthspan and consequently extends the lifespan. (B) The signaling interplay between the ROS production and the SIRT1 activity, which controls the autophagy and the NF-κB signaling and consequently, induces age-related pathology and cellular senescence. Double-edged arrows indicate context-dependent interactions, not specific activation or inhibition.

References

    1. Green D.R., Galluzzi L., Kroemer G. Mitochondria and the autophagy-inflammation-cell death axis in organismal aging. Science. 2011;333:1109–1112. - PMC - PubMed
    1. Koga H., Kaushik S., Cuervo A.M. Protein homeostasis and aging: the importance of exquisite quality control. Ageing Res. Rev. 2011;10:205–215. - "VSports最新版本" PMC - PubMed
    1. Baraibar M.A., Liu L., Ahmed E.K., Friguet B. Protein oxidative damage at the crossroads of cellular senescence, aging, and age-related diseases. Oxid. Med. Cell. Longev. 2012;2012:919832. - "VSports注册入口" PMC - PubMed
    1. Cui H., Kong Y., Zhang H. Oxidative stress, mitochondrial dysfunction, and aging. J. Signal. Trans. 2012;2012:646354. - "VSports在线直播" PMC - PubMed
    1. Salminen A., Kaarniranta K. Regulation of the aging process by autophagy. Trends Mol. Med. 2009;15:217–224. - V体育2025版 - PubMed

"V体育平台登录" LinkOut - more resources