<font draggable="Bzhzx0"></font><var lang="aq1cDnr"><style lang="ibJY1"></style></var> VSports在线直播 - Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The . gov means it’s official VSports app下载. Federal government websites often end in . gov or . mil. Before sharing sensitive information, make sure you’re on a federal government site. .

Https

The site is secure. The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely V体育官网. .

Comparative Study
. 2004 Sep;90(6):1389-401.
doi: 10.1111/j.1471-4159.2004.02609.x.

VSports手机版 - Developmental expression of receptor for advanced glycation end products (RAGE), amphoterin and sulfoglucuronyl (HNK-1) carbohydrate in mouse cerebellum and their role in neurite outgrowth and cell migration

Affiliations
Comparative Study

Developmental expression of receptor for advanced glycation end products (RAGE), amphoterin and sulfoglucuronyl (HNK-1) carbohydrate in mouse cerebellum and their role in neurite outgrowth and cell migration

Denise K H Chou et al. J Neurochem. 2004 Sep.

Abstract

Receptor for advanced glycation end products (RAGE) has been proposed as a signal transduction receptor to promote neurite outgrowth and cell migration, by its interaction with a neurite outgrowth promoting protein, Amphoterin. Amphoterin has been shown to interact with sulfoglucuronyl carbohydrate (SGC). The developmental expression of RAGE, Amphoterin and SGC was studied in pre-natal and post-natal mouse cerebellum to establish their cellular and subcellular localization and function. The amount of RAGE in the cerebellum increased with age. RAGE was expressed pre-natally in the external germinal layer and post-natally in the plasma membranes of the granule neurons of the external and internal granule cell layers and in Purkinje cells VSports手机版. Immunocytochemical analysis by high magnification confocal microscopy showed that RAGE was co-expressed with Amphoterin and SGC in the cell surfaces of granule neurons. This co-localization of RAGE, Amphoterin, and SGC was confirmed in isolated and cultured granule neurons and in migrating granule neurons in explant cultures. Anti-RAGE antibodies inhibited neurite outgrowth and cell migration in explant and slice cultures, similar to anti-Amphoterin and anti-SGC antibodies shown previously. The results suggest that RAGE could act as a signaling molecule for neurite outgrowth and cell migration by its interaction with Amphoterin and that of Amphoterin with SGC. .

PubMed Disclaimer

Publication types

V体育ios版 - MeSH terms

VSports注册入口 - Substances

LinkOut - more resources (VSports注册入口)