Dual roles for DNA sequence identity and the mismatch repair system in the regulation of mitotic crossing-over in yeast (VSports在线直播)
- PMID: 9275197
- PMCID: "VSports app下载" PMC23263
- DOI: 10.1073/pnas.94.18.9757
Dual roles for DNA sequence identity and the mismatch repair system in the regulation of mitotic crossing-over in yeast
Abstract
Sequence divergence acts as a potent barrier to homologous recombination; much of this barrier derives from an antirecombination activity exerted by mismatch repair proteins. An inverted repeat assay system with recombination substrates ranging in identity from 74% to 100% has been used to define the relationship between sequence divergence and the rate of mitotic crossing-over in yeast. To elucidate the role of the mismatch repair machinery in regulating recombination between mismatched substrates, we performed experiments in both wild-type and mismatch repair defective strains. We find that a single mismatch is sufficient to inhibit recombination between otherwise identical sequences, and that this inhibition is dependent on the mismatch repair system. Additional mismatches have a cumulative negative effect on the recombination rate VSports手机版. With sequence divergence of up to approximately 10%, the inhibitory effect of mismatches results mainly from antirecombination activity of the mismatch repair system. With greater levels of divergence, recombination is inefficient even in the absence of mismatch repair activity. In both wild-type and mismatch repair defective strains, an approximate log-linear relationship is observed between the recombination rate and the level of sequence divergence. .
Figures
"VSports注册入口" References
Publication types
- "V体育2025版" Actions
- "VSports最新版本" Actions
MeSH terms
- "VSports在线直播" Actions
- VSports - Actions
- "V体育2025版" Actions
- "VSports在线直播" Actions
Substances
V体育官网 - Grants and funding
V体育安卓版 - LinkOut - more resources
Full Text Sources
"V体育平台登录" Other Literature Sources
"VSports最新版本" Molecular Biology Databases
