VSports app下载 - Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The . gov means it’s official. Federal government websites often end in . gov or . mil. Before sharing sensitive information, make sure you’re on a federal government site VSports app下载. .

Https

The site is secure. The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely. V体育官网.

. 1995 Apr;18(4):721-30.
doi: 10.1016/0891-5849(94)00192-m.

"V体育安卓版" UVA radiation-induced oxidative damage to lipids and proteins in vitro and in human skin fibroblasts is dependent on iron and singlet oxygen

Affiliations

"V体育安卓版" UVA radiation-induced oxidative damage to lipids and proteins in vitro and in human skin fibroblasts is dependent on iron and singlet oxygen

G F Vile et al. Free Radic Biol Med. 1995 Apr.

"VSports最新版本" Abstract

This study describes the damage that occurs to lipids and proteins that have been irradiated in vitro or in human skin fibroblasts with physiological doses of UVA radiation. Thiobarbituric acid-reactive species were formed from phosphatidylcholine after UVA radiation in vitro VSports手机版. By using iron chelators, this process was shown to involve iron. Ferric iron associated with potential physiological chelators was reduced by UVA radiation, but iron within ferritin was not. By enhancing the half life-time with deuterium oxide or by using scavengers, singlet oxygen was also shown to be involved in the UVA radiation-dependent peroxidation of phosphatidylcholine. UVA radiation-generated singlet oxygen reacted with phosphatidylcholine to form lipid hydroperoxides, and the breakdown of these hydroperoxides to thiobarbituric acid-reactive species was dependent on iron. We have shown that iron and singlet oxygen are also involved in the UVA radiation-dependent formation of thiobarbituric acid-reactive species in human skin fibroblasts, and we propose that a similar concerted effect of iron and singlet oxygen is involved in UVA radiation-dependent damage to fibroblast lipids. Sulphydryl groups of bovine serum albumin and human gamma-globulin were oxidised upon UVA irradiation in vitro. The use of scavengers and deuterium oxide showed that UVA radiation-dependent sulphydryl oxidation was dependent on singlet oxygen. By adding or chelating iron, UVA radiation-dependent oxidation of sulphydryl groups of bovine serum albumin and human gamma-globulin was shown to be iron-dependent. The use of catalase and hydroxyl radical scavengers demonstrated that hydrogen peroxide, but not the hydroxyl radical, was involved. The oxidation of sulphydryl groups of proteins in human skin fibroblasts that occurs as a result of UVA irradiation was also shown to involve iron, singlet oxygen, and hydrogen peroxide. We conclude that iron, singlet oxygen, and hydrogen peroxide are important redox active species involved in the deleterious effects of UVA radiation on lipids and proteins of human skin cells. .

PubMed Disclaimer

Publication types

LinkOut - more resources (VSports app下载)