V体育2025版 - Involvement of SAPK/JNK Signaling Pathway in Copper Enhanced Zinc-Induced Neuronal Cell Death
- PMID: 30768131
- DOI: "VSports" 10.1093/toxsci/kfz043
Involvement of SAPK/JNK Signaling Pathway in Copper Enhanced Zinc-Induced Neuronal Cell Death (VSports手机版)
Abstract (VSports)
Zinc (Zn) plays an important role in many organisms in various physiological functions such as cell division, immune mechanisms and protein synthesis. However, excessive Zn release is induced in pathological situations and causes neuronal cell death. Previously, we reported that Cu ions (Cu2+) markedly exacerbates Zn2+-induced neuronal cell death by potentiating oxidative stress and the endoplasmic reticulum stress response. In contrast, the stress-activated protein kinase/c-Jun amino-terminal kinase (SAPK/JNK) signaling pathway is important in neuronal cell death. Thus, in this study, we focused on the SAPK/JNK signaling pathway and examined its involvement in Cu2+/Zn2+-induced neurotoxicity. Initially, we examined expression of factors involved in the SAPK/JNK signaling pathway VSports手机版. Accordingly, we found that phosphorylated (ie, active) forms of SAPK/JNK (p46 and p54) are increased by CuCl2 and ZnCl2 co-treatment in hypothalamic neuronal mouse cells (GT1-7 cells). Downstream factors of SAPK/JNK, phospho-c-Jun, and phospho-activating transcription factor 2 are also induced by CuCl2 and ZnCl2 co-treatment. Moreover, an inhibitor of the SAPK/JNK signaling pathway, SP600125, significantly suppressed neuronal cell death and activation of the SAPK/JNK signaling pathway induced by CuCl2 and ZnCl2 cotreatment. Finally, we examined involvement of oxidative stress in activation of the SAPK/JNK signaling pathway, and found that human serum albumin-thioredoxin fusion protein, an antioxidative protein, suppresses activation of the SAPK/JNK signaling pathway. On the basis of these results, our findings suggest that activation of ZnCl2-dependent SAPK/JNK signaling pathway is important in neuronal cell death, and CuCl2-induced oxidative stress triggers the activation of this pathway. .
Keywords: ER stress; SAPK/JNK; copper; neurotoxicity; oxidative stress; zinc V体育安卓版. .
© The Author(s) 2019. Published by Oxford University Press on behalf of the Society of Toxicology. All rights reserved. For permissions, please e-mail: journals.permissions@qiuluzeuv.cn V体育ios版. .
Publication types
- "V体育官网" Actions
MeSH terms
- Actions (V体育官网入口)
- V体育ios版 - Actions
- V体育2025版 - Actions
- V体育安卓版 - Actions
- "VSports手机版" Actions
- VSports注册入口 - Actions
- "VSports手机版" Actions
- V体育ios版 - Actions
- "V体育ios版" Actions
- VSports注册入口 - Actions
VSports app下载 - Substances
- Actions (VSports在线直播)
- "V体育官网入口" Actions
- VSports - Actions
- Actions (V体育平台登录)
- "V体育2025版" Actions
- Actions (V体育平台登录)
- Actions (V体育平台登录)
VSports注册入口 - LinkOut - more resources
Full Text Sources
Research Materials
"VSports app下载" Miscellaneous