Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The . gov means it’s official. Federal government websites often end in . gov or . mil. Before sharing sensitive information, make sure you’re on a federal government site VSports app下载. .

Https

The site is secure. The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely. V体育官网.

. 2017 Mar;33(1):40-47.
doi: 10.5625/lar.2017.33.1.40. Epub 2017 Mar 27.

HemoHIM, a herbal preparation, alleviates airway inflammation caused by cigarette smoke and lipopolysaccharide

Affiliations

HemoHIM, a herbal preparation, alleviates airway inflammation caused by cigarette smoke and lipopolysaccharide

Na-Rae Shin et al. Lab Anim Res. 2017 Mar.

Abstract

HemoHIM, herbal preparation has designed for immune system recovery VSports手机版. We investigated the anti-inflammatory effect of HemoHIM on cigarette smoke (CS) and lipopolysaccharide (LPS) induced chronic obstructive pulmonary disease (COPD) mouse model. To induce COPD, C57BL/6 mice were exposed to CS for 1 h per day (eight cigarettes per day) for 4 weeks and intranasally received LPS on day 26. HemoHIM was administrated to mice at a dose of 50 or 100 mg/kg 1h before CS exposure. HemoHIM reduced the inflammatory cell count and levels of tumor necrosis factor receptor (TNF)-α, interleukin (IL)-6 and IL-1β in the broncho-alveolar lavage fluid (BALF) induced by CS+LPS exposure. HemoHIM decreased the inflammatory cell infiltration in the airway and inhibited the expression of iNOS and MMP-9 and phosphorylation of Erk in lung tissue exposed to CS+LPS. In summary, our results indicate that HemoHIM inhibited a reduction in the lung inflammatory response on CS and LPS induced lung inflammation via the Erk pathway. Therefore, we suggest that HemoHIM has the potential to treat pulmonary inflammatory disease such as COPD. .

Keywords: Erk; HemoHIM; cigarette smoke; inducible nnitric oxide synthase; matrix metalloproteinase-9. V体育安卓版.

PubMed Disclaimer

Conflict of interest statement

Conflict of interests: The authors declare that there is no financial conflict of interests to publish these results.

Figures

Figure 1
Figure 1. HemoHIM reduced the number of inflammatory cells in the BALF. NC: Non-induced mice; CS+LPS: cigarette smoke (CS) and lipopolysaccharides (LPS) induced mice; ROF: roflumilast (10 mg/kg) and CS and LPS induced mice; H50: HemoHIM (50 mg/kg) and CS and LPS induced mice; H100 (100 mg/kg) and CS and LPS induced mice. The values are expressed as the means±SD. #Significantly different from the control mice, P<0.05; *Significantly different from the CS mice, P<0.05.
Figure 2
Figure 2. HemoHIM decreased pro-inflammatory cytokines. (A) TNF-α, (B) IL-6, and (C) IL-1β. NC: Non-induced mice; CS+LPS: CS and LPS induced mice; ROF: roflumilast (10 mg/kg) and CS and LPS induced mice; H50: HemoHIM (50 mg/kg) and CS and LPS induced mice; H100 (100 mg/kg) and CS and LPS induced mice. The values are expressed as the means±SD. #Significantly different from the control mice, P<0.05; *Significantly different from the CS mice, P<0.05.
Figure 3
Figure 3. HemoHIM inhibited the iNOS and phosphorylation of ERK expression in lung tissue. (A) Expression of iNOS. (B) Phosphorylation of ERK. (C and D) Quantitative analysis of iNOS expression and phosphorylation of ERK expression. NC: Non-induced mice; CS+LPS: CS and LPS induced mice; ROF: roflumilast (10 mg/kg) and CS and LPS induced mice; H50: HemoHIM (50 mg/kg) and CS and LPS induced mice; H100 (100 mg/kg) and CS and LPS induced mice. The values are expressed as the means±SD. #Significantly different from the control mice, P<0.05; *Significantly different from the CS mice, P<0.05.
Figure 4
Figure 4. HemoHIM reduced inflammatory cell infiltration induced by CS and LPS exposure. Hematoxylin and eosin (H&E) staining showed inflammatory infiltration in the peribronchial region and alveolar region. NC: Non-induced mice; CS+LPS: CS and LPS induced mice; ROF: roflumilast (10 mg/kg) and CS and LPS induced mice; H50: HemoHIM (50 mg/kg) and CS and LPS induced mice; H100 (100 mg/kg) and CS and LPS induced mice. The values are expressed as the means±SD. #Significantly different from the control mice, P<0.05; *Significantly different from the CS mice, P<0.05.
Figure 5
Figure 5. HemoHIM decreased the expression and activity of matrix metalloproteinase (MMP)-9 in lung tissue induced by CS and LPS exposure. (A) Representative figure of MMP-9 expression in lung tissue. (B) MMP-9 activity using zymography. NC: Non-induced mice; CS+LPS: CS and LPS induced mice; ROF: roflumilast (10 mg/kg) and CS and LPS induced mice; H50: HemoHIM (50 mg/kg) and CS and LPS induced mice; H100 (100 mg/kg) and CS and LPS induced mice. The values are expressed as the means±SD. #Significantly different from the control mice, P<0.05; *Significantly different from the CS mice, P < 0.05.

"VSports手机版" References

    1. Tang W, Shen Z, Guo J, Sun S. Screening of long non-coding RNA and TUG1 inhibits proliferation with TGF-induction in patients with COPD. Int J Chron Obstruct Pulmon Dis. 2016;11:2951–2964. - PMC - PubMed
    1. Korpershoek Y, Vervoort S, Nijssen L, Trappenburg J, Schuurmans MJ. Factors influencing exacerbation-related self-management in patients with COPD: a qualitative study. Int J Chron Obstruct Pulmon Dis. 2016;11:2977–2990. - PMC - PubMed
    1. Boehme SA, Franz-Bacon K, Ludka J, DiTirro DN, Ly TW, Bacon KB. MAP3K19 Is Overexpressed in COPD and Is a Central Mediator of Cigarette Smoke-Induced Pulmonary Inflammation and Lower Airway Destruction. PLoS One. 2016;11(12):e0167169. - PMC - PubMed
    1. Yang J, Yu HM, Zhou XD, Huang HP, Han Zh, Kolosov VP, Perelman JM. Cigarette smoke induces mucin hypersecretion and inflammatory response through the p66shc adaptor protein-mediated mechanism in human bronchial epithelial cells. Mol Immunol. 2016;69:86–98. - PubMed
    1. Lin K, Liu S, Shen Y, Li Q. Berberine attenuates cigarette smoke-induced acute lung inflammation. Inflammation. 2013;36(5):1079–1086. - PubMed

LinkOut - more resources