Metformin exerts glucose-lowering action in high-fat fed mice via attenuating endotoxemia and enhancing insulin signaling
- PMID: 27180982
- PMCID: PMC4973377 (VSports在线直播)
- DOI: "VSports手机版" 10.1038/aps.2016.21
Metformin exerts glucose-lowering action in high-fat fed mice via attenuating endotoxemia and enhancing insulin signaling (V体育ios版)
Abstract
Aim: Accumulating evidence shows that lipopolysaccharides (LPS) derived from gut gram-negative bacteria can be absorbed, leading to endotoxemia that triggers systemic inflammation and insulin resistance. In this study we examined whether metformin attenuated endotoxemia, thus improving insulin signaling in high-fat diet fed mice VSports手机版. .
Methods: Mice were fed a high-fat diet for 18 weeks to induce insulin resistance. One group of the mice was treated with oral metformin (100 mg·kg(-1)·d(-1)) for 4 weeks. Another group was treated with LPS (50 μg·kg(-1)·d(-1), sc) for 5 days followed by the oral metformin for 10 d. Other two groups received a combination of antibiotics for 7 d or a combination of antibiotics for 7 d followed by the oral metformin for 4 weeks, respectively. Glucose metabolism and insulin signaling in liver and muscle were evaluated, the abundance of gut bacteria, gut permeability and serum LPS levels were measured V体育安卓版. .
Results: In high-fat fed mice, metformin restored the tight junction protein occludin-1 levels in gut, reversed the elevated gut permeability and serum LPS levels, and increased the abundance of beneficial bacteria Lactobacillus and Akkermansia muciniphila. Metformin also increased PKB Ser473 and AMPK T172 phosphorylation, decreased MDA contents and redox-sensitive PTEN protein levels, activated the anti-oxidative Nrf2 system, and increased IκBα in liver and muscle of the mice. Treatment with exogenous LPS abolished the beneficial effects of metformin on glucose metabolism, insulin signaling and oxidative stress in liver and muscle of the mice. Treatment with antibiotics alone produced similar effects as metformin did V体育ios版. Furthermore, the beneficial effects of antibiotics were addictive to those of metformin. .
Conclusion: Metformin administration attenuates endotoxemia and enhances insulin signaling in high-fat fed mice, which contributes to its anti-diabetic effects. VSports最新版本.
Figures
"VSports在线直播" References
-
- Reaven GM. Pathophysiology of insulin resistance in human disease. Physiol Rev 1995; 75: 473–86. - PubMed
-
- Bradlow HL. Obesity and the gut microbiome: pathophysiological aspects. Horm Mol Biol Clin Investig 2014; 17: 53–61. - PubMed
-
- Ramakrishna BS. Role of the gut microbiota in human nutrition and metabolism. J Gastroenterol Hepatol 2013; 28 Suppl 4: 9–17. - PubMed
MeSH terms
- Actions (V体育官网入口)
- Actions (VSports在线直播)
- "V体育2025版" Actions
- "V体育ios版" Actions
- VSports手机版 - Actions
- "V体育官网" Actions
- "VSports手机版" Actions
- "V体育官网入口" Actions
- "VSports手机版" Actions
- V体育安卓版 - Actions
- Actions (V体育官网)
Substances
- V体育安卓版 - Actions
- Actions (V体育2025版)
- Actions (V体育ios版)
- V体育ios版 - Actions
- VSports app下载 - Actions
- V体育官网 - Actions
LinkOut - more resources (VSports手机版)
"VSports注册入口" Full Text Sources
Other Literature Sources
Medical
Research Materials
Miscellaneous
