"VSports在线直播" Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The . gov means it’s official. Federal government websites often end in . gov or VSports app下载. mil. Before sharing sensitive information, make sure you’re on a federal government site. .

Https

The site is secure V体育官网. The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely. .

. 2015 May 15;194(10):4641-9.
doi: 10.4049/jimmunol.1403224. Epub 2015 Apr 13.

In Vitro and In Vivo Analysis of the Gram-Negative Bacteria-Derived Riboflavin Precursor Derivatives Activating Mouse MAIT Cells

Affiliations
Free article

"VSports" In Vitro and In Vivo Analysis of the Gram-Negative Bacteria-Derived Riboflavin Precursor Derivatives Activating Mouse MAIT Cells

Claire Soudais et al. J Immunol. .
Free article

Abstract

Mucosal-associated invariant T (MAIT) cells recognize microbial compounds presented by the MHC-related 1 (MR1) protein. Although riboflavin precursor derivatives from Gram-positive bacteria have been characterized, some level of ligand heterogeneity has been suggested through the analysis of the MAIT cell TCR repertoire in humans and differential reactivity of human MAIT cell clones according to the bacteria. In this study, using Gram-negative bacteria mutated for the riboflavin biosynthetic pathway, we show a strict correlation between the ability to synthesize the 5-amino-ribityl-uracil riboflavin precursor and to activate polyclonal and quasi-monoclonal mouse MAIT cells. To our knowledge, we show for the first time that the semipurified bacterial fraction and the synthetic ligand activate murine MAIT cells in vitro and in vivo VSports手机版. We describe new MR1 ligands that do not activate MAIT cells but compete with bacterial and synthetic compounds activating MAIT cells, providing the capacity to modulate MAIT cell activation. Through competition experiments, we show that the most active synthetic MAIT cell ligand displays the same functional avidity for MR1 as does the microbial compound. Altogether, these results show that most, if not all, MAIT cell ligands found in Escherichia coli are related to the riboflavin biosynthetic pathway and display very limited heterogeneity. .

PubMed Disclaimer

Publication types

V体育ios版 - MeSH terms