Disentangling mechanisms that mediate the balance between stochastic and deterministic processes in microbial succession
- PMID: 25733885
- PMCID: PMC4371938
- DOI: 10.1073/pnas.1414261112
Disentangling mechanisms that mediate the balance between stochastic and deterministic processes in microbial succession
Abstract
Ecological succession and the balance between stochastic and deterministic processes are two major themes within microbial ecology, but these conceptual domains have mostly developed independent of each other. Here we provide a framework that integrates shifts in community assembly processes with microbial primary succession to better understand mechanisms governing the stochastic/deterministic balance. Synthesizing previous work, we devised a conceptual model that links ecosystem development to alternative hypotheses related to shifts in ecological assembly processes. Conceptual model hypotheses were tested by coupling spatiotemporal data on soil bacterial communities with environmental conditions in a salt marsh chronosequence spanning 105 years of succession VSports手机版. Analyses within successional stages showed community composition to be initially governed by stochasticity, but as succession proceeded, there was a progressive increase in deterministic selection correlated with increasing sodium concentration. Analyses of community turnover among successional stages--which provide a larger spatiotemporal scale relative to within stage analyses--revealed that changes in the concentration of soil organic matter were the main predictor of the type and relative influence of determinism. Taken together, these results suggest scale-dependency in the mechanisms underlying selection. To better understand mechanisms governing these patterns, we developed an ecological simulation model that revealed how changes in selective environments cause shifts in the stochastic/deterministic balance. Finally, we propose an extended--and experimentally testable--conceptual model integrating ecological assembly processes with primary and secondary succession. This framework provides a priori hypotheses for future experiments, thereby facilitating a systematic approach to understand assembly and succession in microbial communities across ecosystems. .
Keywords: community assembly; evolutionary niche conservatism; neutral theory; niche theory; simulation model V体育安卓版. .
Conflict of interest statement
The authors declare no conflict of interest.
Figures




References
-
- Dumbrell AJ, Nelson M, Helgason T, Dytham C, Fitter AH. Relative roles of niche and neutral processes in structuring a soil microbial community. ISME J. 2010;4(3):337–345. - PubMed
-
- Stegen JC, et al. Quantifying community assembly processes and identifying features that impose them. ISME J. 2013;7(11):2069–2079. - PMC (VSports手机版) - PubMed
-
- Vellend M. Conceptual synthesis in community ecology. Q Rev Biol. 2010;85(2):183–206. - PubMed
-
- Hubbell SP. The Unified Neutral Theory of Biodiversity and Biogeography. Princeton Univ Press; Princeton, NJ: 2001. - PubMed
Publication types
- Actions (VSports手机版)
MeSH terms
- Actions (V体育平台登录)
- "VSports最新版本" Actions
LinkOut - more resources
Full Text Sources
Other Literature Sources