Long noncoding RNA MALAT1 regulates endothelial cell function and vessel growth (VSports在线直播)
- PMID: 24602777
- DOI: 10.1161/CIRCRESAHA.114.303265
V体育官网 - Long noncoding RNA MALAT1 regulates endothelial cell function and vessel growth
Abstract
Rationale: The human genome harbors a large number of sequences encoding for RNAs that are not translated but control cellular functions by distinct mechanisms VSports手机版. The expression and function of the longer transcripts namely the long noncoding RNAs in the vasculature are largely unknown. .
Objective: Here, we characterized the expression of long noncoding RNAs in human endothelial cells and elucidated the function of the highly expressed metastasis-associated lung adenocarcinoma transcript 1 (MALAT1). V体育安卓版.
Methods and results: Endothelial cells of different origin express relative high levels of the conserved long noncoding RNAs MALAT1, taurine upregulated gene 1 (TUG1), maternally expressed 3 (MEG3), linc00657, and linc00493. MALAT1 was significantly increased by hypoxia and controls a phenotypic switch in endothelial cells. Silencing of MALAT1 by small interfering RNAs or GapmeRs induced a promigratory response and increased basal sprouting and migration, whereas proliferation of endothelial cells was inhibited. When angiogenesis was further stimulated by vascular endothelial growth factor, MALAT1 small interfering RNAs induced discontinuous sprouts indicative of defective proliferation of stalk cells. In vivo studies confirmed that genetic ablation of MALAT1 inhibited proliferation of endothelial cells and reduced neonatal retina vascularization. Pharmacological inhibition of MALAT1 by GapmeRs reduced blood flow recovery and capillary density after hindlimb ischemia. Gene expression profiling followed by confirmatory quantitative reverse transcriptase-polymerase chain reaction demonstrated that silencing of MALAT1 impaired the expression of various cell cycle regulators. V体育ios版.
Conclusions: Silencing of MALAT1 tips the balance from a proliferative to a migratory endothelial cell phenotype in vitro, and its genetic deletion or pharmacological inhibition reduces vascular growth in vivo VSports最新版本. .
Keywords: RNA, long noncoding; angiogenesis effect; endothelium; ischemia; neovascularization inhibitors V体育平台登录. .
Comment in
-
LINCing MALAT1 and angiogenesis.Circ Res. 2014 Apr 25;114(9):1366-8. doi: 10.1161/CIRCRESAHA.114.303896. Circ Res. 2014. PMID: 24763459 No abstract available.
Publication types
- Actions (VSports)
VSports注册入口 - MeSH terms
- VSports - Actions
- Actions (V体育官网入口)
- Actions (VSports手机版)
- V体育官网 - Actions
- "VSports注册入口" Actions
- Actions (VSports在线直播)
- VSports注册入口 - Actions
- Actions (V体育ios版)
- "VSports app下载" Actions
- Actions (VSports app下载)
- "V体育官网入口" Actions
- V体育ios版 - Actions
- V体育安卓版 - Actions
- Actions (VSports注册入口)
- Actions (VSports在线直播)
"VSports在线直播" Substances
- Actions (VSports最新版本)
- VSports - Actions
- V体育官网 - Actions
- "VSports最新版本" Actions
LinkOut - more resources
"VSports在线直播" Full Text Sources
Other Literature Sources
Molecular Biology Databases
