Skip to main page content (V体育2025版)
U.S. flag

An official website of the United States government

Dot gov

The VSports app下载. gov means it’s official. Federal government websites often end in . gov or . mil. Before sharing sensitive information, make sure you’re on a federal government site. .

Https

The site is secure. The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely V体育官网. .

. 2012;8(5):e1002714.
doi: 10.1371/journal.ppat.1002714. Epub 2012 May 31.

Probiotic Bifidobacterium breve induces IL-10-producing Tr1 cells in the colon

Affiliations

Probiotic Bifidobacterium breve induces IL-10-producing Tr1 cells in the colon

Seong Gyu Jeon et al. PLoS Pathog. 2012.

Abstract

Specific intestinal microbiota has been shown to induce Foxp3(+) regulatory T cell development. However, it remains unclear how development of another regulatory T cell subset, Tr1 cells, is regulated in the intestine. Here, we analyzed the role of two probiotic strains of intestinal bacteria, Lactobacillus casei and Bifidobacterium breve in T cell development in the intestine. B. breve, but not L. casei, induced development of IL-10-producing Tr1 cells that express cMaf, IL-21, and Ahr in the large intestine. Intestinal CD103(+) dendritic cells (DCs) mediated B. breve-induced development of IL-10-producing T cells. CD103(+) DCs from Il10(-/-), Tlr2(-/-), and Myd88(-/-) mice showed defective B. breve-induced Tr1 cell development. B. breve-treated CD103(+) DCs failed to induce IL-10 production from co-cultured Il27ra(-/-) T cells. B. breve treatment of Tlr2(-/-) mice did not increase IL-10-producing T cells in the colonic lamina propria. Thus, B VSports手机版. breve activates intestinal CD103(+) DCs to produce IL-10 and IL-27 via the TLR2/MyD88 pathway thereby inducing IL-10-producing Tr1 cells in the large intestine. Oral B. breve administration ameliorated colitis in immunocompromised mice given naïve CD4(+) T cells from wild-type mice, but not Il10(-/-) mice. These findings demonstrate that B. breve prevents intestinal inflammation through the induction of intestinal IL-10-producing Tr1 cells. .

PubMed Disclaimer

Conflict of interest statement

The authors have declared that no competing interests exist.

Figures

Figure 1
Figure 1. Induction of IL-10-producing CD4+ T cells by B. breve in the colonic lamina propria.
6-week-old C57BL/6 mice were fed L. casei or B. breve or placebo daily (each, 1×109) by oral gavage for 3 months (n = 8). Intestinal lamina propria lymphocytes were analyzed for cytokine production by flow cytometry. Percentages of IL-10-, IL-17-, and IFN-γ-producing CD4+ T cells of mice administered with L. casei (A) or B. breve (C) were shown. *P<0.05. (B, D) Representative FACS dot plots showing production of IL-10 and IFN-γ gated on colonic CD4+ T cells in the indicated mice.
Figure 2
Figure 2. Induction of Foxp3 IL-10-producing CD4+ T cells by B. breve.
6-week-old BALB/c mice were administered with B. breve or placebo orally for 1–4 weeks (n = 5). At the indicated time point, mice were sacrificed and CD4+ T cells in the colonic lamina propria were analyzed by flow cytometry. Percentages of CD4+ IL-10+ T cells (A), and CD4+ Foxp3+ T cells (B) are shown. *P<0.02. Representative FACS dot plots for IL-10+ and IL-17+ T cells (C), and histogram for Foxp3+ T cells (D) gated on CD4+ T cells are shown. (E) Foxp3 GFP mice were fed with B. breve for 4 weeks. CD4+ T cells in the colonic lamina propria were analyzed for expression of GFP and IL-10. (F) Percentages of IL-10+ T cells in Foxp3+ or Foxp3 CD4+ T cells (n = 5). Data are representative of two independent experiments; means ± S.D. *P<0.02.
Figure 3
Figure 3. Intestinal DCs mediate B. breve-dependent Tr1 cell development.
CD11c+ DCs (5×104) were isolated from the colonic lamina propria, and cultured with B. breve, L. casei, B. adolescentis, B. longum, or B. bifidum (5×104) for 24 h. After washing, DCs were co-cultured with splenic naïve CD4+ T cells (5×104) in the presence of soluble anti-CD3 mAb for 4 days. (A) T cells were harvested and re-stimulated with plate-bound anti-CD3 and soluble anti-CD28 mAbs for 24 h. IL-10 concentrations in the culture supernatants were analyzed by ELISA. *P<0.001. (B) T cells were harvested and re-stimulated with plate-bound anti-CD3 and soluble anti-CD28 mAbs for 24 h. IL-10 concentrations in the culture supernatants were analyzed by ELISA. *P<0.001. (C) T cells were collected, and then stained for CD4 and Foxp3. Foxp3 expression in CD4+ cells is shown. (D) T cells were harvested, and stimulated with anti-CD3 and anti-CD28 mAbs for 4 h. Total RNA was then extracted to analyze expression of cMaf, Il21, and Ahr by quantitative real-time RT-PCR. Data are representative of five independent experiments and show mean values ± S.D. of triplicate determinations. *P<0.05, **P<0.01.
Figure 4
Figure 4. CD103+ DCs, but not CX3CR1+ DCs, induce B. breve-dependent Tr1 cell differentiation.
CD103+ CX3CR1 CD11b CD11c+ DCs (CD103+ DCs) and CX3CR1+ CD11b+ CD11c+ DCs (CX3CR1+ DCs) were isolated from the colonic lamina propria, and treated with the same numbers of B. breve for 24 h. After washing, splenic naïve CD4+ T cells were co-cultured with B. breve-treated CD103+ DCs or CX3CR1+ DCs in the presence of anti-CD3 mAb for 4 days. (A) T cells were then harvested and re-stimulated for 24 h to analyze IL-10 production by ELISA. *P<0.05. (B) T cells were collected, and re-stimulated with PMA and ionophore for 8 h. Intracellular expression of Foxp3 and IL-10 was then analyzed by flow cytometry. (C) C57BL/6J mice (n = 5) were fed with B. breve for 3 weeks. Then, CD103+ DCs were isolated from MLN and the colonic lamina propria, and co-cultured with splenic naïve CD4+ T cells. The co-cultured T cells were re-stimulated and IL-10 concentration in the supernatants was analyzed by ELISA. Data are representative of four independent experiments and show mean values ± S.D. of triplicate determinations. *P<0.05, **P<0.01.
Figure 5
Figure 5. IL-10/IL-27-dependent Tr1 cell development by B. breve-treated DCs.
(A) CD103+ DCs were isolated from the colonic lamina propria, and incubated with B. breve for 4 h. Total RNA was extracted and analyzed for mRNA expression of Il27p28, Ebi3, and Il10 by quantitative real-time RT-PCR. N.D, not detected. **P<0.01, ***P<0.001. (B) Naïve T cells were co-cultured with B. breve-treated CD103+ DC in the presence of the indicated neutralizing antibody for 4 days. T cells were then harvested and re-stimulated with anti-CD3 and CD28 mAbs for 24 h. IL-10 concentrations in the supernatants were measured by ELISA. *P<0.05, **P<0.01, ***P<0.001, N.S, not significant. (C) CD103+ DCs were isolated from the colonic lamina propria of wild-type and Il10 −/− mice (C57BL/6 background) and incubated with B. breve. Naïve CD4+ T cells from wild-type C57BL/6 mice were then co-cultured with B. breve-treated DCs. T cell production of IL-10 was analyzed by ELISA. N.D, not detected. (D) CD103+ DCs were isolated from the colonic lamina propria of wild-type BALB/c mice and incubated with B. breve. Naïve CD4+ T cells from wild-type and Il27ra −/− mice (BALB/c background) were then co-cultured with B. breve-treated DCs. T cell production of IL-10 was measured by ELISA. Data are representative of three independent experiments and show mean values ± S.D. of triplicate determinations. *P<0.05.
Figure 6
Figure 6. B. breve induces Tr1 cells in a TLR2/MyD88-dependent manner.
(A, C) CD103+ DCs were isolated from the colonic lamina propria of wild-type, Myd88 −/− (A) and Tlr2 −/− (C) mice, incubated with B. breve for 4 h, and then analyzed for mRNA expression of Il27p28, Ebi3, and Il10. *P<0.05, **P<0.01. (B, D) Wild-type, Myd88 −/− (B) and Tlr2 −/− (D) CD103+ DCs were incubated with B. breve for 24 h, and then co-cultured with naïve CD4+ T cells from wild-type mice for 4 days. T cells were harvested and re-stimulated for 24 h. IL-10 production in the supernatants was analyzed by ELISA. Data are representative of three independent experiments and show mean values ± S.D. of triplicate determinations. *P<0.05. N.D, not detected. (E) 6-week-old wild-type and Tlr2 −/− mice (BALB/c background) were fed with B. breve or placebo for 3 weeks (n = 5). Then, the mice were sacrificed and colonic lamina propria lymphocytes were analyzed for IL-10 production by flow cytometry. The percentage of IL-10+ cells gated on CD4+ T cells is shown in the indicated mice. Data are representative of three independent experiments and show mean values ± S.D. of triplicate determinations. *P<0.05. (F) Representative FACS plots of IL-10- and IFN-γ-producing CD4+ T cells were shown.
Figure 7
Figure 7. IL-10-dependent amelioration of intestinal inflammation by B. breve.
(A, C) 6 week-old SCID mice (n = 8 per group) were intraperitoneally injected with PBS or 3×105 of naïve CD4+ T cells from wild-type BALB/c mice (A) or Il10 −/− mice (BALB/c background) (B). The mice were orally administered daily with B. breve from 1 week before the T cell transfer to the end of experiment. Changes in body weight were monitored daily and presented relative to initial body weight. *P<0.05, Error bars, S.E.M. (C) Production of IL-10, IL-17 and IFN-γ from the colon of wild-type T cell-transferred SCID mice daily administered with B. breve or placebo (n = 5 per group). *P<0.0064, **P<0.0005. (D) Hematoxylin and eosin staining of colon sections at 4 weeks after the transfer. Original magnification, ×400. (E) Clinical scores for colitis were shown in the indicated group. Data are representative of two independent experiments. *P<0.05, **P<0.01. N.S, not significant.

References

    1. Frank DN, St Amand AL, Feldman RA, Boedeker EC, Harpaz N, et al. Molecular-phylogenetic characterization of microbial community imbalances in human inflammatory bowel diseases. Proc Natl Acad Sci U S A. 2007;104:13780–13785. - PMC (V体育2025版) - PubMed
    1. Peterson DA, Frank DN, Pace NR, Gordon JI. Metagenomic approaches for defining the pathogenesis of inflammatory bowel diseases. Cell Host Microbe. 2008;3:417–427. - PMC - PubMed
    1. Qin J, Li R, Raes J, Arumugam M, Burgdorf KS, et al. A human gut microbial gene catalogue established by metagenomic sequencing. Nature. 2010;464:59–65. - VSports手机版 - PMC - PubMed
    1. Elinav E, Strowig T, Kau AL, Henao-Mejia J, Thaiss CA, et al. NLRP6 inflammasome regulates colonic microbial ecology and risk for colitis. Cell. 2011;145:745–757. - PMC - PubMed
    1. Hart AL, Stagg AJ, Kamm MA. Use of probiotics in the treatment of inflammatory bowel disease. J Clin Gastroenterol. 2003;36:111–119. - PubMed

Publication types (VSports手机版)

MeSH terms (VSports手机版)

Substances