Skip to main page content (V体育ios版)
U.S. flag

An official website of the United States government

Dot gov

The . gov means it’s official. Federal government websites often end in . gov or . mil. Before sharing sensitive information, make sure you’re on a federal government site VSports app下载. .

Https

The site is secure V体育官网. The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely. .

Review
. 2012 Jun;158(Pt 6):1389-1401.
doi: 10.1099/mic.0.051599-0. Epub 2012 Mar 30.

Isoprenoid biosynthesis in bacterial pathogens

Affiliations
Free article
Review

Isoprenoid biosynthesis in bacterial pathogens

Sinéad Heuston et al. Microbiology (Reading). 2012 Jun.
Free article

Abstract

Isoprenoid biosynthesis is essential for cell survival. Over 35 000 isoprenoid molecules have been identified to date in the three domains of life (bacteria, archaea and eukaryotes), and these molecules are involved in a wide variety of vital biological functions. Isoprenoids may be synthesized via one of two independent nonhomologous pathways, the classical mevalonate pathway or the alternative 2C-methyl-D-erythritol 4-phosphate (MEP) pathway. Given that isoprenoids are indispensable, enzymes involved in their production have been investigated as potential drug targets. It has also been observed that the MEP pathway intermediate 1-hydroxy-2-methyl-2-(E)-butenyl 4-diphosphate (HMB-PP) can activate human Vγ9/Vδ2 T cells. Herein we review isoprenoid biosynthesis in bacterial pathogens. The role of isoprenoid biosynthesis pathways in host-pathogen interactions (virulence potential and immune stimulation) is examined. Finally, the design of antimicrobial drugs that target isoprenoid biosynthesis pathways is discussed VSports手机版. .

PubMed Disclaimer

Publication types

"VSports最新版本" MeSH terms

LinkOut - more resources