VSports - Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The VSports app下载. gov means it’s official. Federal government websites often end in . gov or . mil. Before sharing sensitive information, make sure you’re on a federal government site. .

Https

The site is secure. The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely. V体育官网.

Case Reports
. 2011 Mar;7(3):e1002027.
doi: 10.1371/journal.pgen.1002027. Epub 2011 Mar 24.

V体育2025版 - Whole-exome re-sequencing in a family quartet identifies POP1 mutations as the cause of a novel skeletal dysplasia

Affiliations
Case Reports

Whole-exome re-sequencing in a family quartet identifies POP1 mutations as the cause of a novel skeletal dysplasia

Evgeny A Glazov et al. PLoS Genet. 2011 Mar.

Abstract

Recent advances in DNA sequencing have enabled mapping of genes for monogenic traits in families with small pedigrees and even in unrelated cases. We report the identification of disease-causing mutations in a rare, severe, skeletal dysplasia, studying a family of two healthy unrelated parents and two affected children using whole-exome sequencing. The two affected daughters have clinical and radiographic features suggestive of anauxetic dysplasia (OMIM 607095), a rare form of dwarfism caused by mutations of RMRP. However, mutations of RMRP were excluded in this family by direct sequencing. Our studies identified two novel compound heterozygous loss-of-function mutations in POP1, which encodes a core component of the RNase mitochondrial RNA processing (RNase MRP) complex that directly interacts with the RMRP RNA domains that are affected in anauxetic dysplasia VSports手机版. We demonstrate that these mutations impair the integrity and activity of this complex and that they impair cell proliferation, providing likely molecular and cellular mechanisms by which POP1 mutations cause this severe skeletal dysplasia. .

PubMed Disclaimer

Conflict of interest statement

The authors have declared that no competing interests exist.

Figures

Figure 1
Figure 1. Radiographs of patient 1 at 13 months of age.
(A) J-shaped sella. (B) The tubular bones in the hand are short and show metaphyseal irregularities. (C) The iliac bodies are hypoplastic with slanting acetabular roofs. The capital femoral epiphyses are unossified and the femoral necks are hypoplastic and in varus position. The pubic bones are thin. (D) The vertebral bodies are ovoid with dorsal wedging. (E) Metaphyseal irregularities at the knee and ankle, the metaphysis of the distal tibia is delta-shaped.
Figure 2
Figure 2. Mutations in the POP1 gene.
(A) Pedigree of the studied family. (B) SKDP-6.1 and SKDP-6.2 indicate sequences from non-affected parents. SKDP-6.3 and SKDP-6.4 indicate sequences from two affected siblings. Black arrowheads show positions of the mutated alleles. Heterozygous nucleotide and amino acid substitutions are shown at the top. Presence of the mutated alleles is indicated by red asterisks. (C) The diagram shows scaled drawing of the POP1 gene intron-exon structure (top) and the domain structure of POP1 protein; relative positions of mutations indicated by red asterisks. The lower part of the diagram shows fragments of multiple sequence alignments from UCSC genome browser demonstrating high level of evolutionarily conservation of amino acids affected by the mutations; the affected amino acids, arginine (R) and glycine (G) are highlighted in red.
Figure 3
Figure 3. Relative abundance of pre-5.8S rRNA and RMRP RNA in the affected individuals.
The relative abundance of the steady-state pre-5.8S rRNA and RMRP RNA was determined by the real-time PCR using comparative CT method and human beta actin mRNA as an internal normalization standard. Left side of the panel shows relative abundance of pre-5.8S rRNA in the affected individuals (SKDP-6.3, SKDP-6.4, black bars), non-affected parents (SKDP-6.1, SKDP-6.2, grey bars), and unrelated healthy controls (CNTRL-1 - CNTRL-4, open bars). Right side of the panel shows relative abundance of the RMRP RNA in the affected individuals (SKDP-6.3, SKDP-6.4, black bars), non-affected parents (SKDP-6.1, SKDP-6.2, grey bars), and unrelated healthy controls (CNTRL-1 - CNTRL-4, open bars).
Figure 4
Figure 4. Proliferation rates of stimulated peripheral blood mononuclear cells.
PBMC were labeled with CFSE and stimulated in vitro with PMA and Ionomycin for 7 days. Cell division was assessed by examining rate of dilution of CFSE using flow cytometry. Affected individuals (SKDP-6.3, SKDP-6.4), unaffected parents (SKDP-6.1, SKDP-6.2), and unrelated healthy controls (CNTRL-1 - CNTRL-4) are shown. (A) Representative FACS plots for each sample showing rate of dilution of CFSE in response to stimulation (black lines). Affected individuals show marked reduction in proliferation activity as demonstrated by the reduced rate of dilution of CFSE fluorescence intensities. Solid grey peaks represent unstimulated PBMC controls. (B) Proliferation indices were calculated based on CSFE FACS data for cells undergoing 2 or more cell divisions using ModFit software.

Comment in

References

    1. Ng SB, Turner EH, Robertson PD, Flygare SD, Bigham AW, et al. Targeted capture and massively parallel sequencing of 12 human exomes. Nature. 2009;461:272–276. - PMC - PubMed
    1. Hoischen A, van Bon BWM, Gilissen C, Arts P, van Lier B, et al. De novo mutations of SETBP1 cause Schinzel-Giedion syndrome. Nature Genetics. 2010;42:483–485. - PubMed
    1. Gilissen C, Arts HH, Hoischen A, Spruijt L, Mans DA, et al. Exome sequencing identifies WDR35 variants involved in Sensenbrenner syndrome. Am J Hum Genet. 2010;87:418–423. - PMC - PubMed
    1. Bilguvar K, Ozturk AK, Louvi A, Kwan KY, Choi M, et al. Whole-exome sequencing identifies recessive WDR62 mutations in severe brain malformations. Nature. 2010;467:207–210. - PMC - PubMed
    1. Walsh T, Shahin H, Elkan-Miller T, Lee MK, Thornton AM, et al. Whole exome sequencing and homozygosity mapping identify mutation in the cell polarity protein GPSM2 as the cause of nonsyndromic hearing loss DFNB82. Am J Hum Genet. 2010;87:90–94. - V体育ios版 - PMC - PubMed

Publication types (VSports注册入口)

MeSH terms

VSports注册入口 - Associated data