"VSports注册入口" Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The . gov means it’s official. Federal government websites often end in . gov or VSports app下载. mil. Before sharing sensitive information, make sure you’re on a federal government site. .

Https

The site is secure V体育官网. The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely. .

Review
. 2010 Oct;12(5):319-30.
doi: 10.1007/s11894-010-0131-2.

Intestinal goblet cells and mucins in health and disease: recent insights and progress

Affiliations
Review

Intestinal goblet cells and mucins in health and disease: recent insights and progress

Young S Kim et al. Curr Gastroenterol Rep. 2010 Oct.

Abstract

The mucus layer coating the gastrointestinal tract is the front line of innate host defense, largely because of the secretory products of intestinal goblet cells. Goblet cells synthesize secretory mucin glycoproteins (MUC2) and bioactive molecules such as epithelial membrane-bound mucins (MUC1, MUC3, MUC17), trefoil factor peptides (TFF), resistin-like molecule beta (RELMbeta), and Fc-gamma binding protein (Fcgbp). The MUC2 mucin protein forms trimers by disulfide bonding in cysteine-rich amino terminal von Willebrand factor (vWF) domains, coupled with crosslinking provided by TFF and Fcgbp proteins with MUC2 vWF domains, resulting in a highly viscous extracellular layer. Colonization by commensal intestinal microbiota is limited to an outer "loose" mucus layer, and interacts with the diverse oligosaccharides of mucin glycoproteins, whereas an "inner" adherent mucus layer is largely devoid of bacteria. Defective mucus layers resulting from lack of MUC2 mucin, mutated Muc2 mucin vWF domains, or from deletion of core mucin glycosyltransferase enzymes in mice result in increased bacterial adhesion to the surface epithelium, increased intestinal permeability, and enhanced susceptibility to colitis caused by dextran sodium sulfate. Changes in mucin gene expression and mucin glycan structures occur in cancers of the intestine, contributing to diverse biologic properties involved in the development and progression of cancer. Further research is needed on identification and functional significance of various components of mucus layers and the complex interactions among mucus layers, microbiota, epithelial cells, and the underlying innate and adaptive immunity. Further elucidation of the regulatory mechanisms involved in mucin changes in cancer and inflammation may lead to the development of novel therapeutic approaches VSports手机版. .

PubMed Disclaimer

VSports手机版 - Figures

Fig. 1
Fig. 1
A schematic representation of two mucus layers overlying the epithelial cell surface shown (left) and the domain structures of secretory (MUC2) and membrane-bound (MUC3) mucins shown (right). Intestinal epithelial cell surface is covered by two mucus layers (inner, firmly adherent layer and outer, loosely adherent layer) consisting largely of MUC2 mucin network produced by the goblet cells and other host defense molecules produced by goblet cells, Paneth cells, and absorptive enterocytes. Microbes are associated with the outer, loosely adherent mucus layer, but are absent in the inner, firmly adherent mucus layer. Epithelial cell surface is covered by glycocalyx, which consists of membrane-bound mucins (MUC3 and MUC17 in the small intestine) and other membrane glycoproteins. The measurements shown are for the rat ileum. The domain structure of MUC2 monomer shows central tandem repeat (TR) regions rich in proline, threonine, and serine (PTS domain), to which many oligosaccharide side chains (O-linked glycan) are linked, and four von Willebrand factor D domains flanking the tandem repeat (PTS) domains and C-terminal cysteine knot (CK) domain, which is involved in initial MUC2 dimerization. The domain structure of MUC3 mucin shows that it consists of two subunits, one extracellular and one membrane-bound. The extracellular subunit consists of a glycosylated tandem repeat (PTS) domain and two epidermal growth factor (EGF)—like domains separated by sperm protein, enterokinase, and agrin (SEA) motif (a proteolytic cleavage site during biosynthesis) and a membrane-bound subunit that consist of membrane-spanning domain and a cytoplasmic tail with potential phosphorylation (P) sites

V体育ios版 - References

    1. Lievin-Le Moal V, Servin AL. The front line of enteric host defense against unwelcome intrusion of harmful microorganisms: mucins, antimicrobial peptides, and microbiota. Clin Microbiol Rev. 2006;19:315–337. doi: 10.1128/CMR.19.2.315-337.2006. - DOI - PMC - PubMed
    1. Dharmani P, Srivastava V, Kissoon-Singh V, et al. Role of intestinal mucins in innate host defense mechanisms against pathogens. J Innate Immun. 2009;1:123–135. doi: 10.1159/000163037. - DOI - PMC - PubMed
    1. Hollingsworth MA, Swanson BJ. Mucins in cancer: protection and control of the cell surface. Nat Rev Cancer. 2004;4:45–60. doi: 10.1038/nrc1251. - DOI (V体育平台登录) - PubMed
    1. Andrianifahanana M, Moniaux N, Batra SK. Regulation of mucin expression: mechanistic aspects and implications for cancer and inflammatory diseases. Biochim Biophys Acta. 2006;1765:189–222. - PubMed
    1. McGuckin MA, Eri R, Simms LA, et al. Intestinal barrier dysfunction in inflammatory bowel diseases. Inflamm Bowel Dis. 2009;15:100–113. doi: 10.1002/ibd.20539. - DOI - PubMed

Publication types

V体育ios版 - MeSH terms