Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The . gov means it’s official VSports app下载. Federal government websites often end in . gov or . mil. Before sharing sensitive information, make sure you’re on a federal government site. .

Https

The site is secure. The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely V体育官网. .

Review
. 2009 Oct;46(4):233-41.
doi: 10.1016/j.ceca.2009.09.003. Epub 2009 Sep 26.

Bestrophin and TMEM16-Ca(2+) activated Cl(-) channels with different functions

Affiliations
Review

Bestrophin and TMEM16-Ca(2+) activated Cl(-) channels with different functions (VSports注册入口)

Karl Kunzelmann et al. Cell Calcium. 2009 Oct.

Abstract

In the past, a number of candidates have been proposed to form Ca(2+) activated Cl(-) currents, but it is only recently that two families of proteins, the bestrophins and the TMEM16-proteins, recapitulate reliably the properties of Ca(2+) activated Cl(-) currents. Bestrophin 1 is strongly expressed in the retinal pigment epithelium, but also at lower levels in other cell types. Bestrophin 1 may form Ca(2+) activated chloride channels and, at the same time, affect intracellular Ca(2+) signaling. In epithelial cells, bestrophin 1 probably controls receptor mediated Ca(2+) signaling VSports手机版. It may do so by facilitating Ca(2+) release from the endoplasmic reticulum, thereby indirectly activating membrane localized Ca(2+)-dependent Cl(-) channels. In contrast to bestrophin 1, the Ca(2+) activated Cl(-) channel TMEM16A (anoctamin 1, ANO1) shows most of the biophysical and pharmacological properties that have been attributed to Ca(2+)-dependent Cl(-) channels in various tissues. TMEM16A is broadly expressed in both mouse and human tissues and is of particular importance in epithelial cells. Thus exocrine gland secretion as well as electrolyte transport by both respiratory and intestinal epithelia requires TMEM16A. Because of its role for Ca(2+)-dependent Cl(-) secretion in human airways, it is likely to become a prime target for the therapy of cystic fibrosis lung disease, caused by defective cAMP-dependent Cl(-) secretion. It will be very exciting to learn, how TMEM16A and other TMEM16-proteins are activated upon increase in intracellular Ca(2+), and whether the other nine members of the TMEM16 family also form Cl(-) channels with properties similar to TMEM16A. .

PubMed Disclaimer

MeSH terms

LinkOut - more resources