"V体育官网入口" Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The . gov means it’s official VSports app下载. Federal government websites often end in . gov or . mil. Before sharing sensitive information, make sure you’re on a federal government site. .

Https

The site is secure. The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely V体育官网. .

Comparative Study
. 2009 Apr 16:10:161.
doi: 10.1186/1471-2164-10-161.

VSports手机版 - Estimating accuracy of RNA-Seq and microarrays with proteomics

Affiliations
Comparative Study

Estimating accuracy of RNA-Seq and microarrays with proteomics

Xing Fu et al. BMC Genomics. .

Abstract

Background: Microarrays revolutionized biological research by enabling gene expression comparisons on a transcriptome-wide scale. Microarrays, however, do not estimate absolute expression level accurately. At present, high throughput sequencing is emerging as an alternative methodology for transcriptome studies. Although free of many limitations imposed by microarray design, its potential to estimate absolute transcript levels is unknown. VSports手机版.

Results: In this study, we evaluate relative accuracy of microarrays and transcriptome sequencing (RNA-Seq) using third methodology: proteomics. We find that RNA-Seq provides a better estimate of absolute expression levels V体育安卓版. .

Conclusion: Our result shows that in terms of overall technical performance, RNA-Seq is the technique of choice for studies that require accurate estimation of absolute transcript levels. V体育ios版.

PubMed Disclaimer

Figures

Figure 1
Figure 1
Correlation between mRNA expression levels measured by Affymetrix microarrays and RNA-Seq. mRNA expression levels measured by RNA-Seq in two pooled samples of 5 individuals and by microarrays in the same samples (A) or in 5 independent individual samples (B). Shown are expression levels of 8,441 and 4,758 genes, respectively, expressed above background on at least one of the microarrays in a given experiment and represented by at least two independent sequence reads in RNA-Seq (see Methods for details). (C and D) Person correlation coefficients (r) from comparisons between RNA-Seq and microarray measurements based on each microarray separately and on average expression from all possible microarray combinations for two pooled and 5 individual samples, respectively (see Additional file 1: Table S3 for details).
Figure 2
Figure 2
Correlation between protein and mRNA expression levels measured by Affymetrix arrays and RNA-Seq. Protein expression was measured in four individual samples with technical replicates. mRNA expression was measured by microarrays and RNA-Seq in two pooled samples (A, B, and E), and by microarrays in 5 individual samples (D). Shown are expression intensities of 520 (A and B) and 306 (D and E) genes expressed above background on all microarrays in a given experiment and represented by at least twenty independent sequence reads in RNA-Seq. (Cand F) Person correlation coefficients (r) from comparisons between RNA-Seq and protein measurements (blue) and between microarray and protein measurements (red) for two pooled samples and 5 individual samples, respectively. For RNA-Seq data, the correlations were based on each sequencing experiment separately and on average expression from all possible experiment combinations. For microarrays, the correlations were based on expression values from each microarray separately and on average expression from all possible microarray combinations (see Additional file 1: Table S4 for details).
Figure 3
Figure 3
Distribution of expression signals within genes for the three methodologies. The histograms show total signal density for 6424, 13582, and 1577 genes with detectable expression estimated by microarrays, RNA-Seq, or proteomics, respectively. In order to account for length differences among genes, for each gene we normalized the distances between the middle positions of the detected expression measurements (array probes, sequence reads, or peptides) and the 5' end of the gene by the gene length.

References

    1. Mutch DM, Berger A, Mansourian R, Rytz A, Roberts MA. The limit fold change model: a practical approach for selecting differentially expressed genes from microarray data. BMC Bioinformatics. 2002;3:17. doi: 10.1186/1471-2105-3-17. - DOI - PMC - PubMed
    1. Held GA, Grinstein G, Tu Y. Relationship between gene expression and observed intensities in DNA microarrays – a modeling study. Nucleic Acids Res. 2006;34:e70. doi: 10.1093/nar/gkl122. - DOI - PMC - PubMed
    1. Canales RD, Luo Y, Willey JC, Austermiller B, Barbacioru CC, Boysen C, Hunkapiller K, Jensen RV, Knight CR, Lee KY, et al. Evaluation of DNA microarray results with quantitative gene expression platforms. Nat Biotechnol. 2006;24:1115–1122. doi: 10.1038/nbt1236. - DOI - PubMed
    1. Deshmukh H, Yeh TH, Yu J, Sharma MK, Perry A, Leonard JR, Watson MA, Gutmann DH, Nagarajan R. High-resolution, dual-platform aCGH analysis reveals frequent HIPK2 amplification and increased expression in pilocytic astrocytomas. Oncogene. 2008;27:4745–4751. doi: 10.1038/onc.2008.110. - DOI - PubMed
    1. Patterson TA, Lobenhofer EK, Fulmer-Smentek SB, Collins PJ, Chu TM, Bao W, Fang H, Kawasaki ES, Hager J, Tikhonova IR, et al. Performance comparison of one-color and two-color platforms within the MicroArray Quality Control (MAQC) project. Nat Biotechnol. 2006;24:1140–1150. doi: 10.1038/nbt1242. - DOI - PubMed

Publication types

MeSH terms (VSports注册入口)