Tumor stromal-derived factor-1 recruits vascular progenitors to mitotic neovasculature, where microenvironment influences their differentiated phenotypes
- PMID: 16982747
- DOI: 10.1158/0008-5472.CAN-05-3759
"VSports app下载" Tumor stromal-derived factor-1 recruits vascular progenitors to mitotic neovasculature, where microenvironment influences their differentiated phenotypes
Abstract
Mechanisms underlying tumor vasculogenesis, the homing and engraftment of bone marrow-derived vascular progenitors, remain undefined. We hypothesized that tumor cell-secreted factors regulate vasculogenesis. We studied vasculogenic and nonvasculogenic intracranial murine gliomas. A PCR screen identified stromal-derived factor-1 (SDF-1/CXCL12) and vascular endothelial growth factor (VEGF) expression by vasculogenic glioma cells and spontaneously arising vasculogenic tumors in NF1+/-:Trp53+/- mice, but not by nonvasculogenic glioma cells. Enforced SDF-1, not VEGF, expression in nonvasculogenic cells caused vasculogenesis. Combined SDF-1 and VEGF expression augmented vasculogenesis over SDF-1 expression alone. Blocking SDF-1 receptor CXCR4 reduced short-term homing and long-term engraftment of vascular progenitors. Implanting tumor cells secreting SDF-1 was therefore necessary and sufficient to incorporate marrow-derived precursors into tumor endothelium. SDF-1 seemed to exert these effects by acting locally intratumorally and did not cause an efflux of marrow-derived progenitors into circulation. Tumor microenvironment determined additional fates of marrow-derived cells. Hypoxia, observed with ectopic s. c. murine tumors at levels approximating that of intracranial human glioblastoma, interacted with tumor-secreted SDF-1 to expand engrafted vascular progenitor differentiated phenotypes to include pericytes as well as endothelium. In contrast, less hypoxic orthotopic intracranial murine gliomas contained only marrow-derived endothelium without marrow-derived pericytes. Furthermore, we found that vasculogenesis is significant for tumors because it generates endothelium with a higher mitotic index than endothelium derived from local sources. Although CXCR4 blockade selectively targeted endothelium generated by vasculogenesis, completely inhibiting vessel formation may require combination therapy targeting locally derived and marrow-derived endothelium. VSports手机版.
Publication types
MeSH terms
- "V体育ios版" Actions
- VSports手机版 - Actions
- VSports最新版本 - Actions
- Actions (VSports手机版)
- "VSports在线直播" Actions
- Actions (V体育平台登录)
- Actions (V体育安卓版)
- Actions (VSports app下载)
- "VSports在线直播" Actions
- Actions (VSports最新版本)
- V体育官网 - Actions
- Actions (V体育官网)
- VSports在线直播 - Actions
Substances
- "VSports在线直播" Actions
Grants and funding
LinkOut - more resources (VSports最新版本)
Full Text Sources
Other Literature Sources (V体育平台登录)
Medical
"V体育2025版" Molecular Biology Databases
Research Materials
Miscellaneous
