Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The . gov means it’s official. Federal government websites often end in . gov or . mil VSports app下载. Before sharing sensitive information, make sure you’re on a federal government site. .

Https

The site is secure. The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely. V体育官网.

. 2006 Nov;94(1):193-205.
doi: 10.1093/toxsci/kfl087. Epub 2006 Aug 23.

The spontaneously hypertensive rat: an experimental model of sulfur dioxide-induced airways disease

Affiliations

V体育官网入口 - The spontaneously hypertensive rat: an experimental model of sulfur dioxide-induced airways disease

Urmila P Kodavanti et al. Toxicol Sci. 2006 Nov.

Abstract

Chronic obstructive pulmonary disease (COPD) is characterized by airway obstruction, inflammation, and mucus hypersecretion, features that are common in bronchitis, emphysema, and often asthma. However, current rodent models do not reflect this human disease. Because genetically predisposed spontaneously hypertensive (SH) rats display phenotypes such as systemic inflammation, hypercoagulation, oxidative stress, and suppressed immune function that are also apparent in COPD patients, we hypothesized that SH rat may offer a better model of experimental bronchitis. We, therefore, exposed SH and commonly used Sprague Dawley (SD) rats (male, 13- to 15-weeks old) to 0, 250, or 350 ppm sulfur dioxide (SO(2)), 5 h/day for 4 consecutive days to induce airway injury. SO(2) caused dose-dependent changes in breathing parameters in both strains with SH rats being slightly more affected than SD rats. Increases in bronchoalveolar lavage fluid (BALF) total cells and neutrophilic inflammation were dose dependent and significantly greater in SH than in SD rats. The recovery was incomplete at 4 days following SO(2) exposure in SH rats VSports手机版. Pulmonary protein leakage was modest in either strain, but lactate dehydrogenase and N-acetyl glucosaminidase activity were increased in BALF of SH rats. Airway pathology and morphometric evaluation of mucin demonstrated significantly greater impact of SO(2) in SH than in SD rats. Baseline differences in lung gene expression pattern suggested marked immune dysregulation, oxidative stress, impairment of cell signaling, and fatty acid metabolism in SH rats. SO(2) effects on these genes were more pronounced in SH than in SD rats. Thus, SO(2) exposure in SH rats may yield a relevant experimental model of bronchitis. .

PubMed Disclaimer

"V体育平台登录" MeSH terms