Skip to main page content (V体育平台登录)
U.S. flag

An official website of the United States government

Dot gov

The . gov means it’s official. Federal government websites often end in . gov or . mil. Before sharing sensitive information, make sure you’re on a federal government site VSports app下载. .

Https

The site is secure. The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely. V体育官网.

. 2005 Nov 1;106(9):3242-50.
doi: 10.1182/blood-2005-02-0460. Epub 2005 Jul 14.

Intracellular labile iron pools as direct targets of iron chelators: a fluorescence study of chelator action in living cells

Affiliations
Free article

Intracellular labile iron pools as direct targets of iron chelators: a fluorescence study of chelator action in living cells

Hava Glickstein et al. Blood. .
Free article

Abstract

The primary targets of iron chelators used for treating transfusional iron overload are prevention of iron ingress into tissues and its intracellular scavenging. The present study was aimed at elucidating the capacity of clinically important iron chelators such as deferiprone (DFP), desferrioxamine, and ICL670 to (a) gain direct access to intracellular iron pools of key cells of iron accumulation (macrophages, hepatocytes, and cardiomyocyte cell lines); (b) chelate the labile iron present in discrete cell compartments/organelles; and (c) prevent labile iron involvement in the generation of reactive oxidant species. Chelation of cytosolic and organellar cell iron was visualized dynamically and quantitatively in living cells by fluorescence microscopic imaging of fluorescent metallosensors (used as iron-quenched complexes of calceins) targeted to either cytosol, endosome-lysosomes, or mitochondria. The rate and extent of fluorescence recovery provided an in situ measure of the accessibility of chelators to particular cell sites/organelles. Complementary, fluorogenic redox probes associated with cell compartments enabled identification of chelator-sensitive, localized reactive oxidant production. Our studies indicate that chelation by desferrioxamine is slow and is enhanced in cells with relatively high endocytic activities, while ICL670 and DFP readily enter most cells and efficiently reach the major intracellular sites of iron accumulation VSports手机版. .

PubMed Disclaimer

Publication types

MeSH terms