Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The . gov means it’s official. Federal government websites often end in . gov or . mil. Before sharing sensitive information, make sure you’re on a federal government site. VSports app下载.

Https

The site is secure. The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely. V体育官网.

Review
. 2004 Nov 2;5(1):18.
doi: 10.1186/1465-9921-5-18.

Models of chronic obstructive pulmonary disease

Affiliations
Review

Models of chronic obstructive pulmonary disease

David A Groneberg et al. Respir Res. .

Abstract

Chronic obstructive pulmonary disease (COPD) is a major global health problem and is predicted to become the third most common cause of death by 2020. Apart from the important preventive steps of smoking cessation, there are no other specific treatments for COPD that are as effective in reversing the condition, and therefore there is a need to understand the pathophysiological mechanisms that could lead to new therapeutic strategies. The development of experimental models will help to dissect these mechanisms at the cellular and molecular level. COPD is a disease characterized by progressive airflow obstruction of the peripheral airways, associated with lung inflammation, emphysema and mucus hypersecretion. Different approaches to mimic COPD have been developed but are limited in comparison to models of allergic asthma. COPD models usually do not mimic the major features of human COPD and are commonly based on the induction of COPD-like lesions in the lungs and airways using noxious inhalants such as tobacco smoke, nitrogen dioxide, or sulfur dioxide. Depending on the duration and intensity of exposure, these noxious stimuli induce signs of chronic inflammation and airway remodelling. Emphysema can be achieved by combining such exposure with instillation of tissue-degrading enzymes. Other approaches are based on genetically-targeted mice which develop COPD-like lesions with emphysema, and such mice provide deep insights into pathophysiological mechanisms. Future approaches should aim to mimic irreversible airflow obstruction, associated with cough and sputum production, with the possibility of inducing exacerbations. VSports手机版.

PubMed Disclaimer

Figures

Figure 1
Figure 1
Potential pathogenetic mechanisms involved in COPD Exogenous inhaled noxious stimuli such as tobacco smoke, noxious gases or indoor air pollution and genetic factors are proposed to be the major factors related to the pathogenesis of COPD. These factors may influence protease activity and may also lead to an imbalance between pro-inflammatory and anti-inflammatory mediators.
Figure 2
Figure 2
Experimental approaches to mimic COPD There are three major experimental approaches to mimic COPD or emphysema consisting of inhalation of noxious stimuli such as tobacco smoke, tracheal instillation of tissue-degrading enzymes to induce emphysema-like lesions and gene-modifying techniques leading to COPD-like murine phenotypes.

References

    1. Murray CJL, Lopez AD. Global mortality, disability, and the contribution of risk factors: Global Burden of Disease Study. Lancet. 1997;349:1436–1442. doi: 10.1016/S0140-6736(96)07495-8. - "V体育官网" DOI - PubMed
    1. Chung F, Barnes N, Allen M, Angus R, Corris P, Knox A, Miles J, Morice A, O'Reilly J, Richardson M. Assessing the burden of respiratory disease in the UK. Respir Med. 2002;96:963–975. doi: 10.1053/rmed.2002.1392. - DOI - PubMed
    1. Fletcher C, Peto R. The natural history of chronic airflow obstruction. BMJ. 1977;1:1645–1648. - PMC - PubMed
    1. Pauwels RA, Buist AS, Calverley PM, Jenkins CR, Hurd SS. Global strategy for the diagnosis, management, and prevention of chronic obstructive pulmonary disease. NHLBI/WHO Global Initiative for Chronic Obstructive Lung Disease (GOLD) Workshop summary. Am J Respir Crit Care Med. 2001;163:1256–1276. - PubMed (V体育2025版)
    1. Chung KF, Barnes PJ. Cytokines in asthma. Thorax. 1999;54:825–857. - PMC - PubMed

Publication types