Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The . gov means it’s official. Federal government websites often end in . gov or . mil VSports app下载. Before sharing sensitive information, make sure you’re on a federal government site. .

Https

The site is secure V体育官网. The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely. .

. 2003 Jan;144(1):188-200.
doi: 10.1210/en.2002-220716.

Menkes protein contributes to the function of peptidylglycine alpha-amidating monooxygenase (VSports注册入口)

Affiliations

V体育官网 - Menkes protein contributes to the function of peptidylglycine alpha-amidating monooxygenase

Tami C Steveson et al. Endocrinology. 2003 Jan.

VSports注册入口 - Abstract

Menkes protein (ATP7A) is a P-type ATPase involved in copper uptake and homeostasis. Disturbed copper homeostasis occurs in patients with Menkes disease, an X-linked disorder characterized by mental retardation, neurodegeneration, connective tissue disorders, and early childhood death. Mutations in ATP7A result in malfunction of copper-requiring enzymes, such as tyrosinase and copper/zinc superoxide dismutase. The first step of the two-step amidation reaction carried out by peptidylglycine alpha-amidating monooxygenase (PAM) also requires copper. We used tissue from wild-type rats and mice and an ATP7A-specific antibody to determine that ATP7A is expressed at high levels in tissues expressing high levels of PAM. ATP7A is largely localized to the trans Golgi network in pituitary endocrine cells. The Atp7a mouse, bearing a mutation in the Atp7a gene, is an excellent model system for examining the consequences of ATP7A malfunction VSports手机版. Despite normal levels of PAM protein, levels of several amidated peptides were reduced in pituitary and brain extracts of Atp7a mice, demonstrating that PAM function is compromised when ATP7A is inactive. Based on these results, we conclude that a reduction in the ability of PAM to produce bioactive end-products involved in neuronal growth and development could contribute to many of the biological effects associated with Menkes disease. .

PubMed Disclaimer

Publication types

VSports手机版 - MeSH terms