Cellular copper content modulates differentiation and self-renewal in cultures of cord blood-derived CD34+ cells
- PMID: 11849228
- DOI: VSports - 10.1046/j.0007-1048.2001.03316.x
Cellular copper content modulates differentiation and self-renewal in cultures of cord blood-derived CD34+ cells (VSports注册入口)
Erratum in
- Br J Haematol 2002 May;117(2):485
Abstract (V体育官网入口)
Several clinical observations have suggested that copper (Cu) plays a role in regulating haematopoietic progenitor cell (HPC) development. To further study this role we used an ex vivo system. Cord blood-derived CD34+ cells were cultured in liquid medium supplemented with Kit- ligand, FLt3, interleukin 6 (IL-6), thrombopoietin and IL-3. Under these conditions, Cu content, measured by atomic absorption, was 7 ng/10(7) cells. Modulation of intracellular Cu was achieved by supplementing the cultures with the Cu chelator tetraethylenepentamine, which reduced cellular Cu (4 ng/10(7) cells), or ceruloplasmin or Cu sulphate that elevated cellular Cu (18 and 14 ng/10(7) cells respectively). The results indicated that low Cu content delayed differentiation, as measured by the surface antigens CD34, CD14 and CD15, colony-forming unit (CFU) frequency and cell morphology, while high Cu accelerated differentiation compared with Cu unmanipulated cultures. As a result, expansion of total cells, CFU and CD34+ cells in low Cu was extended (12-16 weeks), and in high Cu was shortened (2-4 weeks), compared with control cultures (6-8 weeks). These effects required modulation of intracellular Cu only during the first 1-3 weeks of the culture; the long-term effects persisted thereafter, suggesting that the decision process for either self-renewal or differentiation is taken early during the culture. This novel method of controlling cell proliferation and differentiation by copper and copper chelators might be utilized for ex vivo manipulation of HPC for various clinical applications VSports手机版. .
Publication types
- "VSports最新版本" Actions
VSports app下载 - MeSH terms
- V体育官网入口 - Actions
- "VSports注册入口" Actions
- "VSports app下载" Actions
- "VSports注册入口" Actions
- "VSports在线直播" Actions
- VSports最新版本 - Actions
Substances
- Actions (V体育官网)
- "VSports在线直播" Actions
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical
Research Materials
Miscellaneous (VSports注册入口)
