Structural analysis of phage-borne stx genes and their flanking sequences in shiga toxin-producing Escherichia coli and Shigella dysenteriae type 1 strains
- PMID: 10948097
- PMCID: PMC101682
- DOI: 10.1128/IAI.68.9.4856-4864.2000
Structural analysis of phage-borne stx genes and their flanking sequences in shiga toxin-producing Escherichia coli and Shigella dysenteriae type 1 strains
Abstract
The stx-flanking regions of 49 Shiga toxin-producing Escherichia coli strains and nine Shigella dysenteriae serotype 1 strains containing either stx, stx(1), stx(2), or stx(2) variant genes, were examined. We analyzed these regions by PCR using a set of primers with one primer specific for the respective stx gene and a second primer complementary to sequences of Stx phages H-19B and 933W. We further characterized the amplification products by restriction endonuclease digestion and nucleotide sequencing. PCR products of stx(1)-containing E. coli strains of serogroups O157, O26, and 0103 showed the same lengths and similar restriction patterns. However, we failed to amplify the 3' stx-flanking region in stx(1)-harboring E. coli O111:H(-) strains. Stx2-producing E. coli strains revealed amplification products of different lengths and restriction patterns, suggesting greater heterogeneity than in stx(1)-positive strains. We also obtained specific PCR products for two Stx2c-producing and seven Stx2f-producing E. coli strains when they were subjected to PCR analysis. In nine S. dysenteriae type 1 strains, H-19B- and 933W-specific primers amplified only the 3' stx-flanking region VSports手机版. The results of our study demonstrate that the stx genes of all strains investigated are continuous with phage sequences. Whereas almost all strains except E. coli O111:H(-) strains were associated with a S-like gene, association with Q could not be demonstrated in nine S. dysenteriae type 1 strains and three E. coli strains. Furthermore, we showed that the organization of the stx-flanking regions is similar in all strains investigated, whereas fine-structure analysis showed subtle differences among the sequences examined. Our results support the hypothesis that stx genes in E. coli and S. dysenteriae are generally phage-borne. .
Figures (VSports app下载)
References
-
- Aleksic S, Karch H, Bockemühl J. A biotyping scheme for Shiga-like (Vero) toxin-producing Escherichia coli O157 and a list of serological cross-reactions between O157 and other gram-negative bacteria. Int J Med Microbiol Virol Parasitol Infect Dis. 1992;276:221–230. - PubMed
-
- Bokete T N, Whittam T S, Wilson R A, Clausen C R, O'Callahan C M, Moseley S L, Fritsche T R, Tarr P I. Genetic and phenotypic analysis of Escherichia coli with enteropathogenic characteristics isolated from Seattle children. J Infect Dis. 1997;175:1382–1389. - PubMed
-
- Datz M, Janetzki M C, Franke S, Gunzer F, Schmidt H, Karch H. Analysis of the enterohemorrhagic Escherichia coli O157 DNA region containing lambdoid phage gene p and Shiga-like toxin structural genes. Appl Environ Microbiol. 1996;62:791–797. - PMC (V体育平台登录) - PubMed
-
- Gannon V P, Teerling C, Masri S A, Gyles C L. Molecular cloning and nucleotide sequence of another variant of the Escherichia coli Shiga-like toxin II family. J Gen Microbiol. 1990;136:1125–1135. - PubMed
-
- Griffin P M, Tauxe R V. The epidemiology of infections caused by Escherichia coli O157:H7, other enterohemorrhagic E. coli, and the associated hemolytic uremic syndrome. Epidemiol Rev. 1991;13:60–98. - PubMed
Publication types (V体育平台登录)
- "V体育官网入口" Actions
MeSH terms
- "VSports最新版本" Actions
- Actions (VSports)
- "V体育安卓版" Actions
Substances
LinkOut - more resources
Full Text Sources
