Skip to main content
Philosophical Transactions of the Royal Society B: Biological Sciences logoLink to Philosophical Transactions of the Royal Society B: Biological Sciences
. 2001 Apr 29;356(1408):437–459. doi: 10.1098/rstb.2000.0781

Molecular virology of Epstein-Barr virus. (VSports注册入口)

G W Bornkamm 1, W Hammerschmidt 1
PMCID: PMC1088437  PMID: 11313004

Abstract

Epstein-Barr virus (EBV) interacts with its host in three distinct ways in a highly regulated fashion: (i) EBV infects human B lymphocytes and induces proliferation of the infected cells, (ii) it enters into a latent phase in vivo that follows the proliferative phase, and (iii) it can be reactivated giving rise to the production of infectious progeny for reinfection of cells of the same type or transmission of the virus to another individual V体育ios版. In healthy people, these processes take place simultaneously in different anatomical and functional compartments and are linked to each other in a highly dynamic steady-state equilibrium. The development of a genetic system has paved the way for the dissection of those processes at a molecular level that can be studied in vitro, i. e. B-cell immortalization and the lytic cycle leading to production of infectious progeny. Polymerase chain reaction analyses coupled to fluorescent-activated cell sorting has on the other hand allowed a descriptive analysis of the virus-host interaction in peripheral blood cells as well as in tonsillar B cells in vivo. This paper is aimed at compiling our present knowledge on the process of B-cell immortalization in vitro as well as in vivo latency, and attempts to integrate this knowledge into the framework of the viral life cycle in vivo.

"VSports注册入口" Full Text

The Full Text of this article is available as a PDF (390. 1 KB) VSports最新版本.

Selected References

These references are in PubMed. This may not be the complete list of references from this article V体育平台登录.

  1. Adldinger H. K., Delius H., Freese U. K., Clarke J., Bornkamm G. W. A putative transforming gene of Jijoye virus differs from that of Epstein-Barr virus prototypes. Virology. 1985 Mar;141(2):221–234. doi: 10.1016/0042-6822(85)90253-3. [DOI] [PubMed] [Google Scholar]
  2. Aiyar A., Tyree C., Sugden B. The plasmid replicon of EBV consists of multiple cis-acting elements that facilitate DNA synthesis by the cell and a viral maintenance element. EMBO J. 1998 Nov 2;17(21):6394–6403. doi: 10.1093/emboj/17.21.6394. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Allday M. J., Crawford D. H., Griffin B. E. Epstein-Barr virus latent gene expression during the initiation of B cell immortalization. J Gen Virol. 1989 Jul;70(Pt 7):1755–1764. doi: 10.1099/0022-1317-70-7-1755. [DOI] [PubMed] [Google Scholar]
  4. Allday M. J., Crawford D. H., Thomas J. A. Epstein-Barr virus (EBV) nuclear antigen 6 induces expression of the EBV latent membrane protein and an activated phenotype in Raji cells. J Gen Virol. 1993 Mar;74(Pt 3):361–369. doi: 10.1099/0022-1317-74-3-361. ["V体育安卓版" DOI] [PubMed] [Google Scholar]
  5. Allday M. J., Sinclair A., Parker G., Crawford D. H., Farrell P. J. Epstein-Barr virus efficiently immortalizes human B cells without neutralizing the function of p53. EMBO J. 1995 Apr 3;14(7):1382–1391. doi: 10.1002/j.1460-2075.1995.tb07124.x. [VSports在线直播 - DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Altmeyer A., Simmons R. C., Krajewski S., Reed J. C., Bornkamm G. W., Chen-Kiang S. Reversal of EBV immortalization precedes apoptosis in IL-6-induced human B cell terminal differentiation. Immunity. 1997 Nov;7(5):667–677. doi: 10.1016/s1074-7613(00)80387-8. [DOI] [PubMed] [Google Scholar]
  7. Ambinder R. F., Mullen M. A., Chang Y. N., Hayward G. S., Hayward S. D. Functional domains of Epstein-Barr virus nuclear antigen EBNA-1. J Virol. 1991 Mar;65(3):1466–1478. doi: 10.1128/jvi.65.3.1466-1478.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Anagnostopoulos I., Hummel M., Kreschel C., Stein H. Morphology, immunophenotype, and distribution of latently and/or productively Epstein-Barr virus-infected cells in acute infectious mononucleosis: implications for the interindividual infection route of Epstein-Barr virus. Blood. 1995 Feb 1;85(3):744–750. [PubMed] [Google Scholar]
  9. Araujo I., Foss H. D., Hummel M., Anagnostopoulos I., Barbosa H. S., Bittencourt A., Stein H. Frequent expansion of Epstein-Barr virus (EBV) infected cells in germinal centres of tonsils from an area with a high incidence of EBV-associated lymphoma. J Pathol. 1999 Feb;187(3):326–330. doi: 10.1002/(SICI)1096-9896(199902)187:3<326::AID-PATH242>3.0.CO;2-N. [DOI] [PubMed] [Google Scholar]
  10. Artavanis-Tsakonas S., Rand M. D., Lake R. J. Notch signaling: cell fate control and signal integration in development. Science. 1999 Apr 30;284(5415):770–776. doi: 10.1126/science.284.5415.770. [V体育2025版 - DOI] [PubMed] [Google Scholar]
  11. Arvanitakis L., Yaseen N., Sharma S. Latent membrane protein-1 induces cyclin D2 expression, pRb hyperphosphorylation, and loss of TGF-beta 1-mediated growth inhibition in EBV-positive B cells. J Immunol. 1995 Aug 1;155(3):1047–1056. [PubMed] [Google Scholar]
  12. Babcock G. J., Decker L. L., Freeman R. B., Thorley-Lawson D. A. Epstein-barr virus-infected resting memory B cells, not proliferating lymphoblasts, accumulate in the peripheral blood of immunosuppressed patients. J Exp Med. 1999 Aug 16;190(4):567–576. doi: 10.1084/jem.190.4.567. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Babcock G. J., Decker L. L., Volk M., Thorley-Lawson D. A. EBV persistence in memory B cells in vivo. Immunity. 1998 Sep;9(3):395–404. doi: 10.1016/s1074-7613(00)80622-6. [V体育官网 - DOI] [PubMed] [Google Scholar]
  14. Babcock G. J., Hochberg D., Thorley-Lawson A. D. The expression pattern of Epstein-Barr virus latent genes in vivo is dependent upon the differentiation stage of the infected B cell. Immunity. 2000 Oct;13(4):497–506. doi: 10.1016/s1074-7613(00)00049-2. ["VSports" DOI] [PubMed] [Google Scholar]
  15. Bain M., Watson R. J., Farrell P. J., Allday M. J. Epstein-Barr virus nuclear antigen 3C is a powerful repressor of transcription when tethered to DNA. J Virol. 1996 Apr;70(4):2481–2489. doi: 10.1128/jvi.70.4.2481-2489.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Bauer G., Höfler P., Zur Hausen H. Epstein-Barr virus induction by a serum factor. I. Induction and cooperation with additional inducers. Virology. 1982 Aug;121(1):184–194. doi: 10.1016/0042-6822(82)90128-3. [DOI] [PubMed] [Google Scholar]
  17. Baumann M. A., Paul C. C. Interleukin-5 is an autocrine growth factor for Epstein-Barr virus-transformed B lymphocytes. Blood. 1992 Apr 1;79(7):1763–1767. [PubMed] [Google Scholar]
  18. Beaufils P., Choquet D., Mamoun R. Z., Malissen B. The (YXXL/I)2 signalling motif found in the cytoplasmic segments of the bovine leukaemia virus envelope protein and Epstein-Barr virus latent membrane protein 2A can elicit early and late lymphocyte activation events. EMBO J. 1993 Dec 15;12(13):5105–5112. doi: 10.1002/j.1460-2075.1993.tb06205.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Benninger-Döring G., Pepperl S., Deml L., Modrow S., Wolf H., Jilg W. Frequency of CD8(+) T lymphocytes specific for lytic and latent antigens of Epstein-Barr virus in healthy virus carriers. Virology. 1999 Nov 25;264(2):289–297. doi: 10.1006/viro.1999.9996. [DOI] [PubMed] [Google Scholar]
  20. Bhat R. A., Thimmappaya B. Two small RNAs encoded by Epstein-Barr virus can functionally substitute for the virus-associated RNAs in the lytic growth of adenovirus 5. Proc Natl Acad Sci U S A. 1983 Aug;80(15):4789–4793. doi: 10.1073/pnas.80.15.4789. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Bird A. G., McLachlan S. M., Britton S. Cyclosporin A promotes spontaneous outgrowth in vitro of Epstein-Barr virus-induced B-cell lines. Nature. 1981 Jan 22;289(5795):300–301. doi: 10.1038/289300a0. [DOI] [PubMed] [Google Scholar]
  22. Birkenbach M., Josefsen K., Yalamanchili R., Lenoir G., Kieff E. Epstein-Barr virus-induced genes: first lymphocyte-specific G protein-coupled peptide receptors. J Virol. 1993 Apr;67(4):2209–2220. doi: 10.1128/jvi.67.4.2209-2220.1993. ["V体育安卓版" DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Bochkarev A., Barwell J. A., Pfuetzner R. A., Bochkareva E., Frappier L., Edwards A. M. Crystal structure of the DNA-binding domain of the Epstein-Barr virus origin-binding protein, EBNA1, bound to DNA. Cell. 1996 Mar 8;84(5):791–800. doi: 10.1016/s0092-8674(00)81056-9. [DOI (VSports最新版本)] [PubMed] [Google Scholar]
  24. Bochkarev A., Barwell J. A., Pfuetzner R. A., Furey W., Jr, Edwards A. M., Frappier L. Crystal structure of the DNA-binding domain of the Epstein-Barr virus origin-binding protein EBNA 1. Cell. 1995 Oct 6;83(1):39–46. doi: 10.1016/0092-8674(95)90232-5. [DOI] [PubMed] [Google Scholar]
  25. Bodescot M., Chambraud B., Farrell P., Perricaudet M. Spliced RNA from the IR1-U2 region of Epstein-Barr virus: presence of an open reading frame for a repetitive polypeptide. EMBO J. 1984 Aug;3(8):1913–1917. doi: 10.1002/j.1460-2075.1984.tb02067.x. [DOI (V体育官网)] [PMC free article] [PubMed] [Google Scholar]
  26. Bogedain C., Wolf H., Modrow S., Stuber G., Jilg W. Specific cytotoxic T lymphocytes recognize the immediate-early transactivator Zta of Epstein-Barr virus. J Virol. 1995 Aug;69(8):4872–4879. doi: 10.1128/jvi.69.8.4872-4879.1995. [DOI (V体育ios版)] [PMC free article] [PubMed] [Google Scholar]
  27. Bornkamm G. W., Hudewentz J., Freese U. K., Zimber U. Deletion of the nontransforming Epstein-Barr virus strain P3HR-1 causes fusion of the large internal repeat to the DSL region. J Virol. 1982 Sep;43(3):952–968. doi: 10.1128/jvi.43.3.952-968.1982. ["VSports最新版本" DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Brielmeier M., Mautner J., Laux G., Hammerschmidt W. The latent membrane protein 2 gene of Epstein-Barr virus is important for efficient B cell immortalization. J Gen Virol. 1996 Nov;77(Pt 11):2807–2818. doi: 10.1099/0022-1317-77-11-2807. [DOI] [PubMed] [Google Scholar]
  29. Brodeur S. R., Cheng G., Baltimore D., Thorley-Lawson D. A. Localization of the major NF-kappaB-activating site and the sole TRAF3 binding site of LMP-1 defines two distinct signaling motifs. J Biol Chem. 1997 Aug 8;272(32):19777–19784. doi: 10.1074/jbc.272.32.19777. [DOI] [PubMed] [Google Scholar]
  30. Burdin N., Péronne C., Banchereau J., Rousset F. Epstein-Barr virus transformation induces B lymphocytes to produce human interleukin 10. J Exp Med. 1993 Feb 1;177(2):295–304. doi: 10.1084/jem.177.2.295. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Burgstahler R., Kempkes B., Steube K., Lipp M. Expression of the chemokine receptor BLR2/EBI1 is specifically transactivated by Epstein-Barr virus nuclear antigen 2. Biochem Biophys Res Commun. 1995 Oct 13;215(2):737–743. doi: 10.1006/bbrc.1995.2525. [DOI (VSports手机版)] [PubMed] [Google Scholar]
  32. Burkhardt A. L., Bolen J. B., Kieff E., Longnecker R. An Epstein-Barr virus transformation-associated membrane protein interacts with src family tyrosine kinases. J Virol. 1992 Aug;66(8):5161–5167. doi: 10.1128/jvi.66.8.5161-5167.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Cahir-McFarland E. D., Davidson D. M., Schauer S. L., Duong J., Kieff E. NF-kappa B inhibition causes spontaneous apoptosis in Epstein-Barr virus-transformed lymphoblastoid cells. Proc Natl Acad Sci U S A. 2000 May 23;97(11):6055–6060. doi: 10.1073/pnas.100119497. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Caldwell R. G., Brown R. C., Longnecker R. Epstein-Barr virus LMP2A-induced B-cell survival in two unique classes of EmuLMP2A transgenic mice. J Virol. 2000 Feb;74(3):1101–1113. doi: 10.1128/jvi.74.3.1101-1113.2000. ["V体育ios版" DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Caldwell R. G., Wilson J. B., Anderson S. J., Longnecker R. Epstein-Barr virus LMP2A drives B cell development and survival in the absence of normal B cell receptor signals. Immunity. 1998 Sep;9(3):405–411. doi: 10.1016/s1074-7613(00)80623-8. [DOI (VSports)] [PubMed] [Google Scholar]
  36. Calender A., Billaud M., Aubry J. P., Banchereau J., Vuillaume M., Lenoir G. M. Epstein-Barr virus (EBV) induces expression of B-cell activation markers on in vitro infection of EBV-negative B-lymphoma cells. Proc Natl Acad Sci U S A. 1987 Nov;84(22):8060–8064. doi: 10.1073/pnas.84.22.8060. [DOI (V体育平台登录)] [PMC free article] [PubMed] [Google Scholar]
  37. Carbone A., Gaidano G., Gloghini A., Larocca L. M., Capello D., Canzonieri V., Antinori A., Tirelli U., Falini B., Dalla-Favera R. Differential expression of BCL-6, CD138/syndecan-1, and Epstein-Barr virus-encoded latent membrane protein-1 identifies distinct histogenetic subsets of acquired immunodeficiency syndrome-related non-Hodgkin's lymphomas. Blood. 1998 Feb 1;91(3):747–755. [PubMed] [Google Scholar]
  38. Chen F., Zou J. Z., di Renzo L., Winberg G., Hu L. F., Klein E., Klein G., Ernberg I. A subpopulation of normal B cells latently infected with Epstein-Barr virus resembles Burkitt lymphoma cells in expressing EBNA-1 but not EBNA-2 or LMP1. J Virol. 1995 Jun;69(6):3752–3758. doi: 10.1128/jvi.69.6.3752-3758.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Chen H. L., Lung M. M., Sham J. S., Choy D. T., Griffin B. E., Ng M. H. Transcription of BamHI-A region of the EBV genome in NPC tissues and B cells. Virology. 1992 Nov;191(1):193–201. doi: 10.1016/0042-6822(92)90181-n. [DOI] [PubMed] [Google Scholar]
  40. Cho M. S., Bornkamm G. W., zur Hausen H. Structure of defective DNA molecules in Epstein-Barr virus preparations from P3HR-1 cells. J Virol. 1984 Jul;51(1):199–207. doi: 10.1128/jvi.51.1.199-207.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Cho M. S., Gissmann L., Hayward S. D. Epstein-Barr virus (P3HR-1) defective DNA codes for components of both the early antigen and viral capsid antigen complexes. Virology. 1984 Aug;137(1):9–19. doi: 10.1016/0042-6822(84)90003-5. [DOI (V体育2025版)] [PubMed] [Google Scholar]
  42. Christensen S., Kodoyianni V., Bosenberg M., Friedman L., Kimble J. lag-1, a gene required for lin-12 and glp-1 signaling in Caenorhabditis elegans, is homologous to human CBF1 and Drosophila Su(H). Development. 1996 May;122(5):1373–1383. doi: 10.1242/dev.122.5.1373. [DOI (VSports)] [PubMed] [Google Scholar]
  43. Cludts I., Farrell P. J. Multiple functions within the Epstein-Barr virus EBNA-3A protein. J Virol. 1998 Mar;72(3):1862–1869. doi: 10.1128/jvi.72.3.1862-1869.1998. [DOI (VSports)] [PMC free article] [PubMed] [Google Scholar]
  44. Cohen J. I., Wang F., Kieff E. Epstein-Barr virus nuclear protein 2 mutations define essential domains for transformation and transactivation. J Virol. 1991 May;65(5):2545–2554. doi: 10.1128/jvi.65.5.2545-2554.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Cohen J. I., Wang F., Mannick J., Kieff E. Epstein-Barr virus nuclear protein 2 is a key determinant of lymphocyte transformation. Proc Natl Acad Sci U S A. 1989 Dec;86(23):9558–9562. doi: 10.1073/pnas.86.23.9558. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Counter C. M., Botelho F. M., Wang P., Harley C. B., Bacchetti S. Stabilization of short telomeres and telomerase activity accompany immortalization of Epstein-Barr virus-transformed human B lymphocytes. J Virol. 1994 May;68(5):3410–3414. doi: 10.1128/jvi.68.5.3410-3414.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Countryman J., Miller G. Activation of expression of latent Epstein-Barr herpesvirus after gene transfer with a small cloned subfragment of heterogeneous viral DNA. Proc Natl Acad Sci U S A. 1985 Jun;82(12):4085–4089. doi: 10.1073/pnas.82.12.4085. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Crawford D. H., Ando I. EB virus induction is associated with B-cell maturation. Immunology. 1986 Nov;59(3):405–409. ["VSports app下载" PMC free article] [PubMed] [Google Scholar]
  49. Crawford D. H., Sweny P., Edwards J. M., Janossy G., Hoffbrand A. V. Long-term T-cell-mediated immunity to Epstein-Barr virus in renal-allograft recipients receiving cyclosporin A. Lancet. 1981 Jan 3;1(8210):10–12. doi: 10.1016/s0140-6736(81)90115-x. [DOI] [PubMed] [Google Scholar]
  50. Cuomo L., Trivedi P., Wang F., Winberg G., Klein G., Masucci M. G. Expression of the Epstein-Barr virus (EBV)-encoded membrane antigen (LMP) increases the stimulatory capacity of EBV-negative B lymphoma lines in allogeneic mixed lymphocyte cultures. Eur J Immunol. 1990 Oct;20(10):2293–2299. doi: 10.1002/eji.1830201019. [DOI] [PubMed] [Google Scholar]
  51. D'Souza B., Rowe M., Walls D. The bfl-1 gene is transcriptionally upregulated by the Epstein-Barr virus LMP1, and its expression promotes the survival of a Burkitt's lymphoma cell line. J Virol. 2000 Jul;74(14):6652–6658. doi: 10.1128/jvi.74.14.6652-6658.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  52. Dambaugh T., Raab-Traub N., Heller M., Beisel C., Hummel M., Cheung A., Fennewald S., King W., Kieff E. Variations among isolates of Epstein-Barr virus. Ann N Y Acad Sci. 1980;354:309–325. doi: 10.1111/j.1749-6632.1980.tb27974.x. [DOI] [PubMed] [Google Scholar]
  53. Davenport M. G., Pagano J. S. Expression of EBNA-1 mRNA is regulated by cell cycle during Epstein-Barr virus type I latency. J Virol. 1999 Apr;73(4):3154–3161. doi: 10.1128/jvi.73.4.3154-3161.1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  54. Dawson C. W., Rickinson A. B., Young L. S. Epstein-Barr virus latent membrane protein inhibits human epithelial cell differentiation. Nature. 1990 Apr 19;344(6268):777–780. doi: 10.1038/344777a0. [VSports在线直播 - DOI] [PubMed] [Google Scholar]
  55. Decker L. L., Klaman L. D., Thorley-Lawson D. A. Detection of the latent form of Epstein-Barr virus DNA in the peripheral blood of healthy individuals. J Virol. 1996 May;70(5):3286–3289. doi: 10.1128/jvi.70.5.3286-3289.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  56. Delecluse H. J., Hilsendegen T., Pich D., Zeidler R., Hammerschmidt W. Propagation and recovery of intact, infectious Epstein-Barr virus from prokaryotic to human cells. Proc Natl Acad Sci U S A. 1998 Jul 7;95(14):8245–8250. doi: 10.1073/pnas.95.14.8245. [DOI] [PMC free article] [PubMed] [Google Scholar]
  57. Delecluse H. J., Pich D., Hilsendegen T., Baum C., Hammerschmidt W. A first-generation packaging cell line for Epstein-Barr virus-derived vectors. Proc Natl Acad Sci U S A. 1999 Apr 27;96(9):5188–5193. doi: 10.1073/pnas.96.9.5188. [DOI (V体育2025版)] [PMC free article] [PubMed] [Google Scholar]
  58. Delius H., Bornkamm G. W. Heterogeneity of Epstein-Barr virus. III. Comparison of a transforming and a nontransforming virus by partial denaturation mapping of their DNAs. J Virol. 1978 Jul;27(1):81–89. doi: 10.1128/jvi.27.1.81-89.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  59. Dent A. L., Shaffer A. L., Yu X., Allman D., Staudt L. M. Control of inflammation, cytokine expression, and germinal center formation by BCL-6. Science. 1997 Apr 25;276(5312):589–592. doi: 10.1126/science.276.5312.589. ["VSports在线直播" DOI] [PubMed] [Google Scholar]
  60. Desgranges C., Wolf H., De-Thé G., Shanmugaratnam K., Cammoun N., Ellouz R., Klein G., Lennert K., Muñoz N., Zur Hausen H. Nasopharyngeal carcinoma. X. Presence of epstein-barr genomes in separated epithelial cells of tumours in patients from Singapore, Tunisia and Kenya. Int J Cancer. 1975 Jul 15;16(1):7–15. doi: 10.1002/ijc.2910160103. [DOI (VSports最新版本)] [PubMed] [Google Scholar]
  61. Devergne O., Hatzivassiliou E., Izumi K. M., Kaye K. M., Kleijnen M. F., Kieff E., Mosialos G. Association of TRAF1, TRAF2, and TRAF3 with an Epstein-Barr virus LMP1 domain important for B-lymphocyte transformation: role in NF-kappaB activation. Mol Cell Biol. 1996 Dec;16(12):7098–7108. doi: 10.1128/mcb.16.12.7098. [VSports - DOI] [PMC free article] [PubMed] [Google Scholar]
  62. Devergne O., Hummel M., Koeppen H., Le Beau M. M., Nathanson E. C., Kieff E., Birkenbach M. A novel interleukin-12 p40-related protein induced by latent Epstein-Barr virus infection in B lymphocytes. J Virol. 1996 Feb;70(2):1143–1153. doi: 10.1128/jvi.70.2.1143-1153.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  63. Dhar V., Schildkraut C. L. Role of EBNA-1 in arresting replication forks at the Epstein-Barr virus oriP family of tandem repeats. Mol Cell Biol. 1991 Dec;11(12):6268–6278. doi: 10.1128/mcb.11.12.6268. [DOI] [PMC free article] [PubMed] [Google Scholar]
  64. Dillner J., Kallin B., Ehlin-Henriksson B., Rymo L., Henle W., Henle G., Klein G. The Epstein-Barr virus determined nuclear antigen is composed of at least three different antigens. Int J Cancer. 1986 Feb 15;37(2):195–200. doi: 10.1002/ijc.2910370205. [DOI] [PubMed] [Google Scholar]
  65. Dillner J., Kallin B., Ehlin-Henriksson B., Timar L., Klein G. Characterization of a second Epstein-Barr virus-determined nuclear antigen associated with the BamHI WYH region of EBV DNA. Int J Cancer. 1985 Mar 15;35(3):359–366. doi: 10.1002/ijc.2910350312. [DOI] [PubMed] [Google Scholar]
  66. Eliopoulos A. G., Blake S. M., Floettmann J. E., Rowe M., Young L. S. Epstein-Barr virus-encoded latent membrane protein 1 activates the JNK pathway through its extreme C terminus via a mechanism involving TRADD and TRAF2. J Virol. 1999 Feb;73(2):1023–1035. doi: 10.1128/jvi.73.2.1023-1035.1999. ["VSports" DOI] [PMC free article] [PubMed] [Google Scholar]
  67. Eliopoulos A. G., Dawson C. W., Mosialos G., Floettmann J. E., Rowe M., Armitage R. J., Dawson J., Zapata J. M., Kerr D. J., Wakelam M. J. CD40-induced growth inhibition in epithelial cells is mimicked by Epstein-Barr Virus-encoded LMP1: involvement of TRAF3 as a common mediator. Oncogene. 1996 Nov 21;13(10):2243–2254. [PubMed] [Google Scholar]
  68. Eliopoulos A. G., Stack M., Dawson C. W., Kaye K. M., Hodgkin L., Sihota S., Rowe M., Young L. S. Epstein-Barr virus-encoded LMP1 and CD40 mediate IL-6 production in epithelial cells via an NF-kappaB pathway involving TNF receptor-associated factors. Oncogene. 1997 Jun 19;14(24):2899–2916. doi: 10.1038/sj.onc.1201258. [DOI] [PubMed] [Google Scholar]
  69. Estrov Z., Kurzrock R., Pocsik E., Pathak S., Kantarjian H. M., Zipf T. F., Harris D., Talpaz M., Aggarwal B. B. Lymphotoxin is an autocrine growth factor for Epstein-Barr virus-infected B cell lines. J Exp Med. 1993 Mar 1;177(3):763–774. doi: 10.1084/jem.177.3.763. [DOI] [PMC free article] [PubMed] [Google Scholar]
  70. Falk M. H., Hültner L., Milner A., Gregory C. D., Bornkamm G. W. Irradiated fibroblasts protect Burkitt lymphoma cells from apoptosis by a mechanism independent of bcl-2. Int J Cancer. 1993 Sep 30;55(3):485–491. doi: 10.1002/ijc.2910550327. ["VSports注册入口" DOI] [PubMed] [Google Scholar]
  71. Faulkner G. C., Burrows S. R., Khanna R., Moss D. J., Bird A. G., Crawford D. H. X-Linked agammaglobulinemia patients are not infected with Epstein-Barr virus: implications for the biology of the virus. J Virol. 1999 Feb;73(2):1555–1564. doi: 10.1128/jvi.73.2.1555-1564.1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  72. Faulkner G. C., Krajewski A. S., Crawford D. H. The ins and outs of EBV infection. Trends Microbiol. 2000 Apr;8(4):185–189. doi: 10.1016/s0966-842x(00)01742-x. [DOI] [PubMed] [Google Scholar]
  73. Feuillard J., Schuhmacher M., Kohanna S., Asso-Bonnet M., Ledeur F., Joubert-Caron R., Bissières P., Polack A., Bornkamm G. W., Raphaël M. Inducible loss of NF-kappaB activity is associated with apoptosis and Bcl-2 down-regulation in Epstein-Barr virus-transformed B lymphocytes. Blood. 2000 Mar 15;95(6):2068–2075. [PubMed] [Google Scholar]
  74. Finke J., Rowe M., Kallin B., Ernberg I., Rosén A., Dillner J., Klein G. Monoclonal and polyclonal antibodies against Epstein-Barr virus nuclear antigen 5 (EBNA-5) detect multiple protein species in Burkitt's lymphoma and lymphoblastoid cell lines. J Virol. 1987 Dec;61(12):3870–3878. doi: 10.1128/jvi.61.12.3870-3878.1987. [V体育官网 - DOI] [PMC free article] [PubMed] [Google Scholar]
  75. Floettmann J. E., Eliopoulos A. G., Jones M., Young L. S., Rowe M. Epstein-Barr virus latent membrane protein-1 (LMP1) signalling is distinct from CD40 and involves physical cooperation of its two C-terminus functional regions. Oncogene. 1998 Nov 5;17(18):2383–2392. doi: 10.1038/sj.onc.1202144. [DOI] [PubMed] [Google Scholar]
  76. Floettmann J. E., Rowe M. Epstein-Barr virus latent membrane protein-1 (LMP1) C-terminus activation region 2 (CTAR2) maps to the far C-terminus and requires oligomerisation for NF-kappaB activation. Oncogene. 1997 Oct 9;15(15):1851–1858. doi: 10.1038/sj.onc.1201359. [V体育安卓版 - DOI] [PubMed] [Google Scholar]
  77. Floettmann J. E., Ward K., Rickinson A. B., Rowe M. Cytostatic effect of Epstein-Barr virus latent membrane protein-1 analyzed using tetracycline-regulated expression in B cell lines. Virology. 1996 Sep 1;223(1):29–40. doi: 10.1006/viro.1996.0452. [DOI] [PubMed] [Google Scholar]
  78. Frappier L., O'Donnell M. EBNA1 distorts oriP, the Epstein-Barr virus latent replication origin. J Virol. 1992 Mar;66(3):1786–1790. doi: 10.1128/jvi.66.3.1786-1790.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  79. Fresen K. O., Cho M. S., zur Hausen H. Recovery of transforming EBV from non-producer cells after superinfection with non-transforming P3HR-1 EBV. Int J Cancer. 1978 Oct 15;22(4):378–383. doi: 10.1002/ijc.2910220403. [DOI (V体育ios版)] [PubMed] [Google Scholar]
  80. Fruehling S., Longnecker R. The immunoreceptor tyrosine-based activation motif of Epstein-Barr virus LMP2A is essential for blocking BCR-mediated signal transduction. Virology. 1997 Sep 1;235(2):241–251. doi: 10.1006/viro.1997.8690. [DOI] [PubMed] [Google Scholar]
  81. Fruehling S., Swart R., Dolwick K. M., Kremmer E., Longnecker R. Tyrosine 112 of latent membrane protein 2A is essential for protein tyrosine kinase loading and regulation of Epstein-Barr virus latency. J Virol. 1998 Oct;72(10):7796–7806. doi: 10.1128/jvi.72.10.7796-7806.1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  82. Furukawa T., Maruyama S., Kawaichi M., Honjo T. The Drosophila homolog of the immunoglobulin recombination signal-binding protein regulates peripheral nervous system development. Cell. 1992 Jun 26;69(7):1191–1197. doi: 10.1016/0092-8674(92)90640-x. [DOI] [PubMed] [Google Scholar]
  83. Fåhraeus R., Rymo L., Rhim J. S., Klein G. Morphological transformation of human keratinocytes expressing the LMP gene of Epstein-Barr virus. Nature. 1990 May 31;345(6274):447–449. doi: 10.1038/345447a0. [DOI] [PubMed] [Google Scholar]
  84. Förster R., Schubel A., Breitfeld D., Kremmer E., Renner-Müller I., Wolf E., Lipp M. CCR7 coordinates the primary immune response by establishing functional microenvironments in secondary lymphoid organs. Cell. 1999 Oct 1;99(1):23–33. doi: 10.1016/s0092-8674(00)80059-8. [DOI] [PubMed] [Google Scholar]
  85. Fütterer A., Mink K., Luz A., Kosco-Vilbois M. H., Pfeffer K. The lymphotoxin beta receptor controls organogenesis and affinity maturation in peripheral lymphoid tissues. Immunity. 1998 Jul;9(1):59–70. doi: 10.1016/s1074-7613(00)80588-9. [DOI] [PubMed] [Google Scholar]
  86. Gahn T. A., Schildkraut C. L. The Epstein-Barr virus origin of plasmid replication, oriP, contains both the initiation and termination sites of DNA replication. Cell. 1989 Aug 11;58(3):527–535. doi: 10.1016/0092-8674(89)90433-9. [DOI (V体育ios版)] [PubMed] [Google Scholar]
  87. Gahn T. A., Sugden B. An EBNA-1-dependent enhancer acts from a distance of 10 kilobase pairs to increase expression of the Epstein-Barr virus LMP gene. J Virol. 1995 Apr;69(4):2633–2636. doi: 10.1128/jvi.69.4.2633-2636.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  88. Gahn T. A., Sugden B. Marked, transient inhibition of expression of the Epstein-Barr virus latent membrane protein gene in Burkitt's lymphoma cell lines by electroporation. J Virol. 1993 Nov;67(11):6379–6386. doi: 10.1128/jvi.67.11.6379-6386.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  89. Gibbons D. L., Rowe M., Cope A. P., Feldmann M., Brennan F. M. Lymphotoxin acts as an autocrine growth factor for Epstein-Barr virus-transformed B cells and differentiated Burkitt lymphoma cell lines. Eur J Immunol. 1994 Aug;24(8):1879–1885. doi: 10.1002/eji.1830240825. [VSports手机版 - DOI] [PubMed] [Google Scholar]
  90. Gilligan K., Rajadurai P., Resnick L., Raab-Traub N. Epstein-Barr virus small nuclear RNAs are not expressed in permissively infected cells in AIDS-associated leukoplakia. Proc Natl Acad Sci U S A. 1990 Nov;87(22):8790–8794. doi: 10.1073/pnas.87.22.8790. [VSports注册入口 - DOI] [PMC free article] [PubMed] [Google Scholar]
  91. Gires O., Kohlhuber F., Kilger E., Baumann M., Kieser A., Kaiser C., Zeidler R., Scheffer B., Ueffing M., Hammerschmidt W. Latent membrane protein 1 of Epstein-Barr virus interacts with JAK3 and activates STAT proteins. EMBO J. 1999 Jun 1;18(11):3064–3073. doi: 10.1093/emboj/18.11.3064. [DOI] [PMC free article] [PubMed] [Google Scholar]
  92. Gires O., Zimber-Strobl U., Gonnella R., Ueffing M., Marschall G., Zeidler R., Pich D., Hammerschmidt W. Latent membrane protein 1 of Epstein-Barr virus mimics a constitutively active receptor molecule. EMBO J. 1997 Oct 15;16(20):6131–6140. doi: 10.1093/emboj/16.20.6131. [DOI] [PMC free article] [PubMed] [Google Scholar]
  93. Glickman J. N., Howe J. G., Steitz J. A. Structural analyses of EBER1 and EBER2 ribonucleoprotein particles present in Epstein-Barr virus-infected cells. J Virol. 1988 Mar;62(3):902–911. doi: 10.1128/jvi.62.3.902-911.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  94. Goldfeld A. E., Liu P., Liu S., Flemington E. K., Strominger J. L., Speck S. H. Cyclosporin A and FK506 block induction of the Epstein-Barr virus lytic cycle by anti-immunoglobulin. Virology. 1995 May 10;209(1):225–229. doi: 10.1006/viro.1995.1247. [DOI] [PubMed] [Google Scholar]
  95. Gottschalk S., Ng C. Y., Perez M., Smith C. A., Sample C., Brenner M. K., Heslop H. E., Rooney C. M. An Epstein-Barr virus deletion mutant associated with fatal lymphoproliferative disease unresponsive to therapy with virus-specific CTLs. Blood. 2001 Feb 15;97(4):835–843. doi: 10.1182/blood.v97.4.835. ["VSports注册入口" DOI] [PubMed] [Google Scholar]
  96. Gratama J. W., Oosterveer M. A., Zwaan F. E., Lepoutre J., Klein G., Ernberg I. Eradication of Epstein-Barr virus by allogeneic bone marrow transplantation: implications for sites of viral latency. Proc Natl Acad Sci U S A. 1988 Nov;85(22):8693–8696. doi: 10.1073/pnas.85.22.8693. [DOI] [PMC free article] [PubMed] [Google Scholar]
  97. Greenspan J. S., Greenspan D., Lennette E. T., Abrams D. I., Conant M. A., Petersen V., Freese U. K. Replication of Epstein-Barr virus within the epithelial cells of oral "hairy" leukoplakia, an AIDS-associated lesion. N Engl J Med. 1985 Dec 19;313(25):1564–1571. doi: 10.1056/NEJM198512193132502. [DOI] [PubMed] [Google Scholar]
  98. Grogan E., Jenson H., Countryman J., Heston L., Gradoville L., Miller G. Transfection of a rearranged viral DNA fragment, WZhet, stably converts latent Epstein-Barr viral infection to productive infection in lymphoid cells. Proc Natl Acad Sci U S A. 1987 Mar;84(5):1332–1336. doi: 10.1073/pnas.84.5.1332. [DOI (V体育官网入口)] [PMC free article] [PubMed] [Google Scholar]
  99. Grossman S. R., Johannsen E., Tong X., Yalamanchili R., Kieff E. The Epstein-Barr virus nuclear antigen 2 transactivator is directed to response elements by the J kappa recombination signal binding protein. Proc Natl Acad Sci U S A. 1994 Aug 2;91(16):7568–7572. doi: 10.1073/pnas.91.16.7568. [V体育官网 - DOI] [PMC free article] [PubMed] [Google Scholar]
  100. Grundhoff A. T., Kremmer E., Türeci O., Glieden A., Gindorf C., Atz J., Mueller-Lantzsch N., Schubach W. H., Grässer F. A. Characterization of DP103, a novel DEAD box protein that binds to the Epstein-Barr virus nuclear proteins EBNA2 and EBNA3C. J Biol Chem. 1999 Jul 2;274(27):19136–19144. doi: 10.1074/jbc.274.27.19136. [DOI] [PubMed] [Google Scholar]
  101. Hammarskjöld M. L., Simurda M. C. Epstein-Barr virus latent membrane protein transactivates the human immunodeficiency virus type 1 long terminal repeat through induction of NF-kappa B activity. J Virol. 1992 Nov;66(11):6496–6501. doi: 10.1128/jvi.66.11.6496-6501.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  102. Hammerschmidt W., Sugden B., Baichwal V. R. The transforming domain alone of the latent membrane protein of Epstein-Barr virus is toxic to cells when expressed at high levels. J Virol. 1989 Jun;63(6):2469–2475. doi: 10.1128/jvi.63.6.2469-2475.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  103. Hammerschmidt W., Sugden B. Genetic analysis of immortalizing functions of Epstein-Barr virus in human B lymphocytes. Nature. 1989 Aug 3;340(6232):393–397. doi: 10.1038/340393a0. ["VSports" DOI] [PubMed] [Google Scholar]
  104. Hammerschmidt W., Sugden B. Identification and characterization of oriLyt, a lytic origin of DNA replication of Epstein-Barr virus. Cell. 1988 Nov 4;55(3):427–433. doi: 10.1016/0092-8674(88)90028-1. [DOI] [PubMed] [Google Scholar]
  105. Harada S., Kieff E. Epstein-Barr virus nuclear protein LP stimulates EBNA-2 acidic domain-mediated transcriptional activation. J Virol. 1997 Sep;71(9):6611–6618. doi: 10.1128/jvi.71.9.6611-6618.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  106. Harada S., Yalamanchili R., Kieff E. Residues 231 to 280 of the Epstein-Barr virus nuclear protein 2 are not essential for primary B-lymphocyte growth transformation. J Virol. 1998 Dec;72(12):9948–9954. doi: 10.1128/jvi.72.12.9948-9954.1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  107. Henderson S., Rowe M., Gregory C., Croom-Carter D., Wang F., Longnecker R., Kieff E., Rickinson A. Induction of bcl-2 expression by Epstein-Barr virus latent membrane protein 1 protects infected B cells from programmed cell death. Cell. 1991 Jun 28;65(7):1107–1115. doi: 10.1016/0092-8674(91)90007-l. ["VSports在线直播" DOI] [PubMed] [Google Scholar]
  108. Henkel T., Ling P. D., Hayward S. D., Peterson M. G. Mediation of Epstein-Barr virus EBNA2 transactivation by recombination signal-binding protein J kappa. Science. 1994 Jul 1;265(5168):92–95. doi: 10.1126/science.8016657. [DOI] [PubMed] [Google Scholar]
  109. Henle W., Diehl V., Kohn G., Zur Hausen H., Henle G. Herpes-type virus and chromosome marker in normal leukocytes after growth with irradiated Burkitt cells. Science. 1967 Sep 1;157(3792):1064–1065. doi: 10.1126/science.157.3792.1064. [DOI] [PubMed] [Google Scholar]
  110. Heston L., Rabson M., Brown N., Miller G. New Epstein-Barr virus variants from cellular subclones of P3J-HR-1 Burkitt lymphoma. Nature. 1982 Jan 14;295(5845):160–163. doi: 10.1038/295160a0. [DOI] [PubMed] [Google Scholar]
  111. Hinuma Y., Konn M., Yamaguchi J., Wudarski D. J., Blakeslee J. R., Jr, Grace J. T., Jr Immunofluorescence and herpes-type virus particles in the P3HR-1 Burkitt lymphoma cell line. J Virol. 1967 Oct;1(5):1045–1051. doi: 10.1128/jvi.1.5.1045-1051.1967. [DOI] [PMC free article] [PubMed] [Google Scholar]
  112. Hitt M. M., Allday M. J., Hara T., Karran L., Jones M. D., Busson P., Tursz T., Ernberg I., Griffin B. E. EBV gene expression in an NPC-related tumour. EMBO J. 1989 Sep;8(9):2639–2651. doi: 10.1002/j.1460-2075.1989.tb08404.x. ["V体育官网入口" DOI] [PMC free article] [PubMed] [Google Scholar]
  113. Howe J. G., Steitz J. A. Localization of Epstein-Barr virus-encoded small RNAs by in situ hybridization. Proc Natl Acad Sci U S A. 1986 Dec;83(23):9006–9010. doi: 10.1073/pnas.83.23.9006. [DOI (V体育官网入口)] [PMC free article] [PubMed] [Google Scholar]
  114. Hsieh J. J., Hayward S. D. Masking of the CBF1/RBPJ kappa transcriptional repression domain by Epstein-Barr virus EBNA2. Science. 1995 Apr 28;268(5210):560–563. doi: 10.1126/science.7725102. ["VSports在线直播" DOI] [PubMed] [Google Scholar]
  115. Hsieh J. J., Henkel T., Salmon P., Robey E., Peterson M. G., Hayward S. D. Truncated mammalian Notch1 activates CBF1/RBPJk-repressed genes by a mechanism resembling that of Epstein-Barr virus EBNA2. Mol Cell Biol. 1996 Mar;16(3):952–959. doi: 10.1128/mcb.16.3.952. [DOI] [PMC free article] [PubMed] [Google Scholar]
  116. Huen D. S., Henderson S. A., Croom-Carter D., Rowe M. The Epstein-Barr virus latent membrane protein-1 (LMP1) mediates activation of NF-kappa B and cell surface phenotype via two effector regions in its carboxy-terminal cytoplasmic domain. Oncogene. 1995 Feb 2;10(3):549–560. [PubMed] [Google Scholar]
  117. Hurley E. A., Thorley-Lawson D. A. B cell activation and the establishment of Epstein-Barr virus latency. J Exp Med. 1988 Dec 1;168(6):2059–2075. doi: 10.1084/jem.168.6.2059. [DOI] [PMC free article] [PubMed] [Google Scholar]
  118. Höfelmayr H., Strobl L. J., Marschall G., Bornkamm G. W., Zimber-Strobl U. Activated Notch1 can transiently substitute for EBNA2 in the maintenance of proliferation of LMP1-expressing immortalized B cells. J Virol. 2001 Mar;75(5):2033–2040. doi: 10.1128/JVI.75.5.2033-2040.2001. ["V体育2025版" DOI] [PMC free article] [PubMed] [Google Scholar]
  119. Inman G. J., Farrell P. J. Epstein-Barr virus EBNA-LP and transcription regulation properties of pRB, p107 and p53 in transfection assays. J Gen Virol. 1995 Sep;76(Pt 9):2141–2149. doi: 10.1099/0022-1317-76-9-2141. [V体育平台登录 - DOI] [PubMed] [Google Scholar]
  120. Izumi K. M., Cahir McFarland E. D., Riley E. A., Rizzo D., Chen Y., Kieff E. The residues between the two transformation effector sites of Epstein-Barr virus latent membrane protein 1 are not critical for B-lymphocyte growth transformation. J Virol. 1999 Dec;73(12):9908–9916. doi: 10.1128/jvi.73.12.9908-9916.1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  121. Izumi K. M., Cahir McFarland E. D., Ting A. T., Riley E. A., Seed B., Kieff E. D. The Epstein-Barr virus oncoprotein latent membrane protein 1 engages the tumor necrosis factor receptor-associated proteins TRADD and receptor-interacting protein (RIP) but does not induce apoptosis or require RIP for NF-kappaB activation. Mol Cell Biol. 1999 Aug;19(8):5759–5767. doi: 10.1128/mcb.19.8.5759. ["VSports" DOI] [PMC free article] [PubMed] [Google Scholar]
  122. Izumi K. M., Kaye K. M., Kieff E. D. The Epstein-Barr virus LMP1 amino acid sequence that engages tumor necrosis factor receptor associated factors is critical for primary B lymphocyte growth transformation. Proc Natl Acad Sci U S A. 1997 Feb 18;94(4):1447–1452. doi: 10.1073/pnas.94.4.1447. [DOI (VSports)] [PMC free article] [PubMed] [Google Scholar]
  123. Izumi K. M., Kieff E. D. The Epstein-Barr virus oncogene product latent membrane protein 1 engages the tumor necrosis factor receptor-associated death domain protein to mediate B lymphocyte growth transformation and activate NF-kappaB. Proc Natl Acad Sci U S A. 1997 Nov 11;94(23):12592–12597. doi: 10.1073/pnas.94.23.12592. [DOI] [PMC free article] [PubMed] [Google Scholar]
  124. Janz A., Oezel M., Kurzeder C., Mautner J., Pich D., Kost M., Hammerschmidt W., Delecluse H. J. Infectious Epstein-Barr virus lacking major glycoprotein BLLF1 (gp350/220) demonstrates the existence of additional viral ligands. J Virol. 2000 Nov;74(21):10142–10152. doi: 10.1128/jvi.74.21.10142-10152.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  125. Jarriault S., Brou C., Logeat F., Schroeter E. H., Kopan R., Israel A. Signalling downstream of activated mammalian Notch. Nature. 1995 Sep 28;377(6547):355–358. doi: 10.1038/377355a0. [DOI] [PubMed] [Google Scholar]
  126. Jeang K. T., Hayward S. D. Organization of the Epstein-Barr virus DNA molecule. III. Location of the P3HR-1 deletion junction and characterization of the NotI repeat units that form part of the template for an abundant 12-O-tetradecanoylphorbol-13-acetate-induced mRNA transcript. J Virol. 1983 Oct;48(1):135–148. doi: 10.1128/jvi.48.1.135-148.1983. ["V体育官网" DOI] [PMC free article] [PubMed] [Google Scholar]
  127. Johannsen E., Koh E., Mosialos G., Tong X., Kieff E., Grossman S. R. Epstein-Barr virus nuclear protein 2 transactivation of the latent membrane protein 1 promoter is mediated by J kappa and PU.1. J Virol. 1995 Jan;69(1):253–262. doi: 10.1128/jvi.69.1.253-262.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  128. Johannsen E., Miller C. L., Grossman S. R., Kieff E. EBNA-2 and EBNA-3C extensively and mutually exclusively associate with RBPJkappa in Epstein-Barr virus-transformed B lymphocytes. J Virol. 1996 Jun;70(6):4179–4183. doi: 10.1128/jvi.70.6.4179-4183.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  129. Joseph A. M., Babcock G. J., Thorley-Lawson D. A. Cells expressing the Epstein-Barr virus growth program are present in and restricted to the naive B-cell subset of healthy tonsils. J Virol. 2000 Nov;74(21):9964–9971. doi: 10.1128/jvi.74.21.9964-9971.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  130. Joseph A. M., Babcock G. J., Thorley-Lawson D. A. EBV persistence involves strict selection of latently infected B cells. J Immunol. 2000 Sep 15;165(6):2975–2981. doi: 10.4049/jimmunol.165.6.2975. [DOI] [PubMed] [Google Scholar]
  131. Kaiser C., Laux G., Eick D., Jochner N., Bornkamm G. W., Kempkes B. The proto-oncogene c-myc is a direct target gene of Epstein-Barr virus nuclear antigen 2. J Virol. 1999 May;73(5):4481–4484. doi: 10.1128/jvi.73.5.4481-4484.1999. [VSports在线直播 - DOI] [PMC free article] [PubMed] [Google Scholar]
  132. Kallin B., Dillner J., Ernberg I., Ehlin-Henriksson B., Rosén A., Henle W., Henle G., Klein G. Four virally determined nuclear antigens are expressed in Epstein-Barr virus-transformed cells. Proc Natl Acad Sci U S A. 1986 Mar;83(5):1499–1503. doi: 10.1073/pnas.83.5.1499. ["V体育安卓版" DOI] [PMC free article] [PubMed] [Google Scholar]
  133. Karajannis M. A., Hummel M., Anagnostopoulos I., Stein H. Strict lymphotropism of Epstein-Barr virus during acute infectious mononucleosis in nonimmunocompromised individuals. Blood. 1997 Apr 15;89(8):2856–2862. [PubMed] [Google Scholar]
  134. Kataoka H., Tahara H., Watanabe T., Sugawara M., Ide T., Goto M., Furuichi Y., Sugimoto M. Immortalization of immunologically committed Epstein-Barr virus-transformed human B-lymphoblastoid cell lines accompanied by a strong telomerase activity. Differentiation. 1997 Dec;62(4):203–211. doi: 10.1046/j.1432-0436.1998.6240203.x. [DOI] [PubMed] [Google Scholar]
  135. Kato J., Motoyama N., Taniuchi I., Takeshita H., Toyoda M., Masuda K., Watanabe T. Affinity maturation in Lyn kinase-deficient mice with defective germinal center formation. J Immunol. 1998 May 15;160(10):4788–4795. [PubMed] [Google Scholar]
  136. Kawabe T., Naka T., Yoshida K., Tanaka T., Fujiwara H., Suematsu S., Yoshida N., Kishimoto T., Kikutani H. The immune responses in CD40-deficient mice: impaired immunoglobulin class switching and germinal center formation. Immunity. 1994 Jun;1(3):167–178. doi: 10.1016/1074-7613(94)90095-7. [DOI] [PubMed] [Google Scholar]
  137. Kaye K. M., Izumi K. M., Kieff E. Epstein-Barr virus latent membrane protein 1 is essential for B-lymphocyte growth transformation. Proc Natl Acad Sci U S A. 1993 Oct 1;90(19):9150–9154. doi: 10.1073/pnas.90.19.9150. [V体育官网 - DOI] [PMC free article] [PubMed] [Google Scholar]
  138. Kaye K. M., Izumi K. M., Mosialos G., Kieff E. The Epstein-Barr virus LMP1 cytoplasmic carboxy terminus is essential for B-lymphocyte transformation; fibroblast cocultivation complements a critical function within the terminal 155 residues. J Virol. 1995 Feb;69(2):675–683. doi: 10.1128/jvi.69.2.675-683.1995. ["V体育2025版" DOI] [PMC free article] [PubMed] [Google Scholar]
  139. Kempkes B., Pich D., Zeidler R., Sugden B., Hammerschmidt W. Immortalization of human B lymphocytes by a plasmid containing 71 kilobase pairs of Epstein-Barr virus DNA. J Virol. 1995 Jan;69(1):231–238. doi: 10.1128/jvi.69.1.231-238.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  140. Kempkes B., Spitkovsky D., Jansen-Dürr P., Ellwart J. W., Kremmer E., Delecluse H. J., Rottenberger C., Bornkamm G. W., Hammerschmidt W. B-cell proliferation and induction of early G1-regulating proteins by Epstein-Barr virus mutants conditional for EBNA2. EMBO J. 1995 Jan 3;14(1):88–96. doi: 10.1002/j.1460-2075.1995.tb06978.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  141. Khan G., Miyashita E. M., Yang B., Babcock G. J., Thorley-Lawson D. A. Is EBV persistence in vivo a model for B cell homeostasis? Immunity. 1996 Aug;5(2):173–179. doi: 10.1016/s1074-7613(00)80493-8. [DOI] [PubMed] [Google Scholar]
  142. Kidd S., Lieber T., Young M. W. Ligand-induced cleavage and regulation of nuclear entry of Notch in Drosophila melanogaster embryos. Genes Dev. 1998 Dec 1;12(23):3728–3740. doi: 10.1101/gad.12.23.3728. [DOI] [PMC free article] [PubMed] [Google Scholar]
  143. Kieser A., Kaiser C., Hammerschmidt W. LMP1 signal transduction differs substantially from TNF receptor 1 signaling in the molecular functions of TRADD and TRAF2. EMBO J. 1999 May 4;18(9):2511–2521. doi: 10.1093/emboj/18.9.2511. [DOI (VSports在线直播)] [PMC free article] [PubMed] [Google Scholar]
  144. Kieser A., Kilger E., Gires O., Ueffing M., Kolch W., Hammerschmidt W. Epstein-Barr virus latent membrane protein-1 triggers AP-1 activity via the c-Jun N-terminal kinase cascade. EMBO J. 1997 Nov 3;16(21):6478–6485. doi: 10.1093/emboj/16.21.6478. [DOI (V体育安卓版)] [PMC free article] [PubMed] [Google Scholar]
  145. Kilger E., Kieser A., Baumann M., Hammerschmidt W. Epstein-Barr virus-mediated B-cell proliferation is dependent upon latent membrane protein 1, which simulates an activated CD40 receptor. EMBO J. 1998 Mar 16;17(6):1700–1709. doi: 10.1093/emboj/17.6.1700. [DOI] [PMC free article] [PubMed] [Google Scholar]
  146. Kim O. J., Yates J. L. Mutants of Epstein-Barr virus with a selective marker disrupting the TP gene transform B cells and replicate normally in culture. J Virol. 1993 Dec;67(12):7634–7640. doi: 10.1128/jvi.67.12.7634-7640.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  147. Kitay M. K., Rowe D. T. Cell cycle stage-specific phosphorylation of the Epstein-Barr virus immortalization protein EBNA-LP. J Virol. 1996 Nov;70(11):7885–7893. doi: 10.1128/jvi.70.11.7885-7893.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  148. Komano J., Maruo S., Kurozumi K., Oda T., Takada K. Oncogenic role of Epstein-Barr virus-encoded RNAs in Burkitt's lymphoma cell line Akata. J Virol. 1999 Dec;73(12):9827–9831. doi: 10.1128/jvi.73.12.9827-9831.1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  149. Komano J., Sugiura M., Takada K. Epstein-Barr virus contributes to the malignant phenotype and to apoptosis resistance in Burkitt's lymphoma cell line Akata. J Virol. 1998 Nov;72(11):9150–9156. doi: 10.1128/jvi.72.11.9150-9156.1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  150. Kulwichit W., Edwards R. H., Davenport E. M., Baskar J. F., Godfrey V., Raab-Traub N. Expression of the Epstein-Barr virus latent membrane protein 1 induces B cell lymphoma in transgenic mice. Proc Natl Acad Sci U S A. 1998 Sep 29;95(20):11963–11968. doi: 10.1073/pnas.95.20.11963. [DOI] [PMC free article] [PubMed] [Google Scholar]
  151. Laherty C. D., Hu H. M., Opipari A. W., Wang F., Dixit V. M. The Epstein-Barr virus LMP1 gene product induces A20 zinc finger protein expression by activating nuclear factor kappa B. J Biol Chem. 1992 Dec 5;267(34):24157–24160. [VSports在线直播 - PubMed] [Google Scholar]
  152. Lam K. M., Syed N., Whittle H., Crawford D. H. Circulating Epstein-Barr virus-carrying B cells in acute malaria. Lancet. 1991 Apr 13;337(8746):876–878. doi: 10.1016/0140-6736(91)90203-2. [DOI] [PubMed] [Google Scholar]
  153. Lam K. P., Kühn R., Rajewsky K. In vivo ablation of surface immunoglobulin on mature B cells by inducible gene targeting results in rapid cell death. Cell. 1997 Sep 19;90(6):1073–1083. doi: 10.1016/s0092-8674(00)80373-6. [DOI] [PubMed] [Google Scholar]
  154. Laux G., Adam B., Strobl L. J., Moreau-Gachelin F. The Spi-1/PU.1 and Spi-B ets family transcription factors and the recombination signal binding protein RBP-J kappa interact with an Epstein-Barr virus nuclear antigen 2 responsive cis-element. EMBO J. 1994 Dec 1;13(23):5624–5632. doi: 10.1002/j.1460-2075.1994.tb06900.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  155. Laux G., Dugrillon F., Eckert C., Adam B., Zimber-Strobl U., Bornkamm G. W. Identification and characterization of an Epstein-Barr virus nuclear antigen 2-responsive cis element in the bidirectional promoter region of latent membrane protein and terminal protein 2 genes. J Virol. 1994 Nov;68(11):6947–6958. doi: 10.1128/jvi.68.11.6947-6958.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  156. Laux G., Economou A., Farrell P. J. The terminal protein gene 2 of Epstein-Barr virus is transcribed from a bidirectional latent promoter region. J Gen Virol. 1989 Nov;70(Pt 11):3079–3084. doi: 10.1099/0022-1317-70-11-3079. [DOI] [PubMed] [Google Scholar]
  157. Laux G., Perricaudet M., Farrell P. J. A spliced Epstein-Barr virus gene expressed in immortalized lymphocytes is created by circularization of the linear viral genome. EMBO J. 1988 Mar;7(3):769–774. doi: 10.1002/j.1460-2075.1988.tb02874.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  158. Le Roux A., Kerdiles B., Walls D., Dedieu J. F., Perricaudet M. The Epstein-Barr virus determined nuclear antigens EBNA-3A, -3B, and -3C repress EBNA-2-mediated transactivation of the viral terminal protein 1 gene promoter. Virology. 1994 Dec;205(2):596–602. doi: 10.1006/viro.1994.1687. [DOI (VSports app下载)] [PubMed] [Google Scholar]
  159. Lecourtois M., Schweisguth F. Indirect evidence for Delta-dependent intracellular processing of notch in Drosophila embryos. Curr Biol. 1998 Jun 18;8(13):771–774. doi: 10.1016/s0960-9822(98)70300-8. [DOI] [PubMed] [Google Scholar]
  160. Lee M. A., Diamond M. E., Yates J. L. Genetic evidence that EBNA-1 is needed for efficient, stable latent infection by Epstein-Barr virus. J Virol. 1999 Apr;73(4):2974–2982. doi: 10.1128/jvi.73.4.2974-2982.1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  161. Lee M. A., Yates J. L. BHRF1 of Epstein-Barr virus, which is homologous to human proto-oncogene bcl2, is not essential for transformation of B cells or for virus replication in vitro. J Virol. 1992 Apr;66(4):1899–1906. doi: 10.1128/jvi.66.4.1899-1906.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  162. Levitskaya J., Coram M., Levitsky V., Imreh S., Steigerwald-Mullen P. M., Klein G., Kurilla M. G., Masucci M. G. Inhibition of antigen processing by the internal repeat region of the Epstein-Barr virus nuclear antigen-1. Nature. 1995 Jun 22;375(6533):685–688. doi: 10.1038/375685a0. [DOI] [PubMed] [Google Scholar]
  163. Liebowitz D., Wang D., Kieff E. Orientation and patching of the latent infection membrane protein encoded by Epstein-Barr virus. J Virol. 1986 Apr;58(1):233–237. doi: 10.1128/jvi.58.1.233-237.1986. [DOI (VSports最新版本)] [PMC free article] [PubMed] [Google Scholar]
  164. Ling P. D., Rawlins D. R., Hayward S. D. The Epstein-Barr virus immortalizing protein EBNA-2 is targeted to DNA by a cellular enhancer-binding protein. Proc Natl Acad Sci U S A. 1993 Oct 15;90(20):9237–9241. doi: 10.1073/pnas.90.20.9237. [DOI] [PMC free article] [PubMed] [Google Scholar]
  165. Ling P. D., Ryon J. J., Hayward S. D. EBNA-2 of herpesvirus papio diverges significantly from the type A and type B EBNA-2 proteins of Epstein-Barr virus but retains an efficient transactivation domain with a conserved hydrophobic motif. J Virol. 1993 Jun;67(6):2990–3003. doi: 10.1128/jvi.67.6.2990-3003.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  166. Longnecker R., Druker B., Roberts T. M., Kieff E. An Epstein-Barr virus protein associated with cell growth transformation interacts with a tyrosine kinase. J Virol. 1991 Jul;65(7):3681–3692. doi: 10.1128/jvi.65.7.3681-3692.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  167. Longnecker R., Miller C. L., Miao X. Q., Marchini A., Kieff E. The only domain which distinguishes Epstein-Barr virus latent membrane protein 2A (LMP2A) from LMP2B is dispensable for lymphocyte infection and growth transformation in vitro; LMP2A is therefore nonessential. J Virol. 1992 Nov;66(11):6461–6469. doi: 10.1128/jvi.66.11.6461-6469.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  168. Longnecker R., Miller C. L., Miao X. Q., Tomkinson B., Kieff E. The last seven transmembrane and carboxy-terminal cytoplasmic domains of Epstein-Barr virus latent membrane protein 2 (LMP2) are dispensable for lymphocyte infection and growth transformation in vitro. J Virol. 1993 Apr;67(4):2006–2013. doi: 10.1128/jvi.67.4.2006-2013.1993. [DOI (VSports手机版)] [PMC free article] [PubMed] [Google Scholar]
  169. Longnecker R., Miller C. L., Tomkinson B., Miao X. Q., Kieff E. Deletion of DNA encoding the first five transmembrane domains of Epstein-Barr virus latent membrane proteins 2A and 2B. J Virol. 1993 Aug;67(8):5068–5074. doi: 10.1128/jvi.67.8.5068-5074.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  170. Mackey D., Middleton T., Sugden B. Multiple regions within EBNA1 can link DNAs. J Virol. 1995 Oct;69(10):6199–6208. doi: 10.1128/jvi.69.10.6199-6208.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  171. Mackey D., Sugden B. The linking regions of EBNA1 are essential for its support of replication and transcription. Mol Cell Biol. 1999 May;19(5):3349–3359. doi: 10.1128/mcb.19.5.3349. ["VSports注册入口" DOI] [PMC free article] [PubMed] [Google Scholar]
  172. Mannick J. B., Cohen J. I., Birkenbach M., Marchini A., Kieff E. The Epstein-Barr virus nuclear protein encoded by the leader of the EBNA RNAs is important in B-lymphocyte transformation. J Virol. 1991 Dec;65(12):6826–6837. doi: 10.1128/jvi.65.12.6826-6837.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  173. Marchini A., Tomkinson B., Cohen J. I., Kieff E. BHRF1, the Epstein-Barr virus gene with homology to Bc12, is dispensable for B-lymphocyte transformation and virus replication. J Virol. 1991 Nov;65(11):5991–6000. doi: 10.1128/jvi.65.11.5991-6000.1991. [VSports手机版 - DOI] [PMC free article] [PubMed] [Google Scholar]
  174. Marshall D., Sample C. Epstein-Barr virus nuclear antigen 3C is a transcriptional regulator. J Virol. 1995 Jun;69(6):3624–3630. doi: 10.1128/jvi.69.6.3624-3630.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  175. Matera A. G. Nuclear bodies: multifaceted subdomains of the interchromatin space. Trends Cell Biol. 1999 Aug;9(8):302–309. doi: 10.1016/s0962-8924(99)01606-2. [DOI] [PubMed] [Google Scholar]
  176. Matsumoto M., Lo S. F., Carruthers C. J., Min J., Mariathasan S., Huang G., Plas D. R., Martin S. M., Geha R. S., Nahm M. H. Affinity maturation without germinal centres in lymphotoxin-alpha-deficient mice. Nature. 1996 Aug 1;382(6590):462–466. doi: 10.1038/382462a0. [DOI] [PubMed] [Google Scholar]
  177. Meitinger C., Strobl L. J., Marschall G., Bornkamm G. W., Zimber-Strobl U. Crucial sequences within the Epstein-Barr virus TP1 promoter for EBNA2-mediated transactivation and interaction of EBNA2 with its responsive element. J Virol. 1994 Nov;68(11):7497–7506. doi: 10.1128/jvi.68.11.7497-7506.1994. ["VSports app下载" DOI] [PMC free article] [PubMed] [Google Scholar]
  178. Mellinghoff I., Daibata M., Humphreys R. E., Mulder C., Takada K., Sairenji T. Early events in Epstein-Barr virus genome expression after activation: regulation by second messengers of B cell activation. Virology. 1991 Dec;185(2):922–928. doi: 10.1016/0042-6822(91)90574-u. ["VSports注册入口" DOI] [PubMed] [Google Scholar]
  179. Miller C. L., Burkhardt A. L., Lee J. H., Stealey B., Longnecker R., Bolen J. B., Kieff E. Integral membrane protein 2 of Epstein-Barr virus regulates reactivation from latency through dominant negative effects on protein-tyrosine kinases. Immunity. 1995 Feb;2(2):155–166. doi: 10.1016/s1074-7613(95)80040-9. [DOI] [PubMed] [Google Scholar]
  180. Miller C. L., Lee J. H., Kieff E., Longnecker R. An integral membrane protein (LMP2) blocks reactivation of Epstein-Barr virus from latency following surface immunoglobulin crosslinking. Proc Natl Acad Sci U S A. 1994 Jan 18;91(2):772–776. doi: 10.1073/pnas.91.2.772. [DOI] [PMC free article] [PubMed] [Google Scholar]
  181. Miller C. L., Longnecker R., Kieff E. Epstein-Barr virus latent membrane protein 2A blocks calcium mobilization in B lymphocytes. J Virol. 1993 Jun;67(6):3087–3094. doi: 10.1128/jvi.67.6.3087-3094.1993. [DOI (VSports注册入口)] [PMC free article] [PubMed] [Google Scholar]
  182. Miller G., Robinson J., Heston L., Lipman M. Differences between laboratory strains of Epstein-Barr virus based on immortalization, abortive infection, and interference. Proc Natl Acad Sci U S A. 1974 Oct;71(10):4006–4010. doi: 10.1073/pnas.71.10.4006. [DOI] [PMC free article] [PubMed] [Google Scholar]
  183. Miller W. E., Mosialos G., Kieff E., Raab-Traub N. Epstein-Barr virus LMP1 induction of the epidermal growth factor receptor is mediated through a TRAF signaling pathway distinct from NF-kappaB activation. J Virol. 1997 Jan;71(1):586–594. doi: 10.1128/jvi.71.1.586-594.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  184. Miyashita E. M., Yang B., Babcock G. J., Thorley-Lawson D. A. Identification of the site of Epstein-Barr virus persistence in vivo as a resting B cell. J Virol. 1997 Jul;71(7):4882–4891. doi: 10.1128/jvi.71.7.4882-4891.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  185. Miyashita E. M., Yang B., Lam K. M., Crawford D. H., Thorley-Lawson D. A. A novel form of Epstein-Barr virus latency in normal B cells in vivo. Cell. 1995 Feb 24;80(4):593–601. doi: 10.1016/0092-8674(95)90513-8. [DOI] [PubMed] [Google Scholar]
  186. Mombaerts P., Iacomini J., Johnson R. S., Herrup K., Tonegawa S., Papaioannou V. E. RAG-1-deficient mice have no mature B and T lymphocytes. Cell. 1992 Mar 6;68(5):869–877. doi: 10.1016/0092-8674(92)90030-g. [DOI] [PubMed] [Google Scholar]
  187. Mosialos G., Birkenbach M., Yalamanchili R., VanArsdale T., Ware C., Kieff E. The Epstein-Barr virus transforming protein LMP1 engages signaling proteins for the tumor necrosis factor receptor family. Cell. 1995 Feb 10;80(3):389–399. doi: 10.1016/0092-8674(95)90489-1. [DOI] [PubMed] [Google Scholar]
  188. Mosialos G., Hanissian S. H., Jawahar S., Vara L., Kieff E., Chatila T. A. A Ca2+/calmodulin-dependent protein kinase, CaM kinase-Gr, expressed after transformation of primary human B lymphocytes by Epstein-Barr virus (EBV) is induced by the EBV oncogene LMP1. J Virol. 1994 Mar;68(3):1697–1705. doi: 10.1128/jvi.68.3.1697-1705.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  189. Nakagomi H., Dolcetti R., Bejarano M. T., Pisa P., Kiessling R., Masucci M. G. The Epstein-Barr virus latent membrane protein-1 (LMP1) induces interleukin-10 production in Burkitt lymphoma lines. Int J Cancer. 1994 Apr 15;57(2):240–244. doi: 10.1002/ijc.2910570218. [DOI] [PubMed] [Google Scholar]
  190. Niedobitek G., Agathanggelou A., Herbst H., Whitehead L., Wright D. H., Young L. S. Epstein-Barr virus (EBV) infection in infectious mononucleosis: virus latency, replication and phenotype of EBV-infected cells. J Pathol. 1997 Jun;182(2):151–159. doi: 10.1002/(SICI)1096-9896(199706)182:2<151::AID-PATH824>3.0.CO;2-3. [DOI] [PubMed] [Google Scholar]
  191. Niedobitek G., Herbst H., Young L. S., Brooks L., Masucci M. G., Crocker J., Rickinson A. B., Stein H. Patterns of Epstein-Barr virus infection in non-neoplastic lymphoid tissue. Blood. 1992 May 15;79(10):2520–2526. [PubMed] [Google Scholar]
  192. Niedobitek G., Kremmer E., Herbst H., Whitehead L., Dawson C. W., Niedobitek E., von Ostau C., Rooney N., Grässer F. A., Young L. S. Immunohistochemical detection of the Epstein-Barr virus-encoded latent membrane protein 2A in Hodgkin's disease and infectious mononucleosis. Blood. 1997 Aug 15;90(4):1664–1672. [VSports在线直播 - PubMed] [Google Scholar]
  193. Nitsche F., Bell A., Rickinson A. Epstein-Barr virus leader protein enhances EBNA-2-mediated transactivation of latent membrane protein 1 expression: a role for the W1W2 repeat domain. J Virol. 1997 Sep;71(9):6619–6628. doi: 10.1128/jvi.71.9.6619-6628.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  194. Norio P., Schildkraut C. L., Yates J. L. Initiation of DNA replication within oriP is dispensable for stable replication of the latent Epstein-Barr virus chromosome after infection of established cell lines. J Virol. 2000 Sep;74(18):8563–8574. doi: 10.1128/jvi.74.18.8563-8574.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  195. Ohno S., Luka J., Lindahl T., Klein G. Identification of a purified complement-fixing antigen as the Epstein-Barr-virus determined nuclear antigen (EBNA) by its binding to metaphase chromosomes. Proc Natl Acad Sci U S A. 1977 Apr;74(4):1605–1609. doi: 10.1073/pnas.74.4.1605. [DOI] [PMC free article] [PubMed] [Google Scholar]
  196. Pallesen G., Hamilton-Dutoit S. J., Rowe M., Young L. S. Expression of Epstein-Barr virus latent gene products in tumour cells of Hodgkin's disease. Lancet. 1991 Feb 9;337(8737):320–322. doi: 10.1016/0140-6736(91)90943-j. [DOI] [PubMed] [Google Scholar]
  197. Parker G. A., Crook T., Bain M., Sara E. A., Farrell P. J., Allday M. J. Epstein-Barr virus nuclear antigen (EBNA)3C is an immortalizing oncoprotein with similar properties to adenovirus E1A and papillomavirus E7. Oncogene. 1996 Dec 19;13(12):2541–2549. [VSports注册入口 - PubMed] [Google Scholar]
  198. Parker G. A., Touitou R., Allday M. J. Epstein-Barr virus EBNA3C can disrupt multiple cell cycle checkpoints and induce nuclear division divorced from cytokinesis. Oncogene. 2000 Feb 3;19(5):700–709. doi: 10.1038/sj.onc.1203327. [DOI] [PubMed] [Google Scholar]
  199. Peng M., Lundgren E. Transient expression of the Epstein-Barr virus LMP1 gene in human primary B cells induces cellular activation and DNA synthesis. Oncogene. 1992 Sep;7(9):1775–1782. [PubMed (V体育2025版)] [Google Scholar]
  200. Peng R., Gordadze A. V., Fuentes Pananá E. M., Wang F., Zong J., Hayward G. S., Tan J., Ling P. D. Sequence and functional analysis of EBNA-LP and EBNA2 proteins from nonhuman primate lymphocryptoviruses. J Virol. 2000 Jan;74(1):379–389. doi: 10.1128/jvi.74.1.379-389.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  201. Pope J. H., Horne M. K., Scott W. Transformation of foetal human keukocytes in vitro by filtrates of a human leukaemic cell line containing herpes-like virus. Int J Cancer. 1968 Nov 15;3(6):857–866. doi: 10.1002/ijc.2910030619. [DOI] [PubMed] [Google Scholar]
  202. Prang N. S., Hornef M. W., Jäger M., Wagner H. J., Wolf H., Schwarzmann F. M. Lytic replication of Epstein-Barr virus in the peripheral blood: analysis of viral gene expression in B lymphocytes during infectious mononucleosis and in the normal carrier state. Blood. 1997 Mar 1;89(5):1665–1677. [PubMed (VSports最新版本)] [Google Scholar]
  203. Puglielli M. T., Desai N., Speck S. H. Regulation of EBNA gene transcription in lymphoblastoid cell lines: characterization of sequences downstream of BCR2 (Cp). J Virol. 1997 Jan;71(1):120–128. doi: 10.1128/jvi.71.1.120-128.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  204. Puglielli M. T., Woisetschlaeger M., Speck S. H. oriP is essential for EBNA gene promoter activity in Epstein-Barr virus-immortalized lymphoblastoid cell lines. J Virol. 1996 Sep;70(9):5758–5768. doi: 10.1128/jvi.70.9.5758-5768.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  205. Qu L., Rowe D. T. Epstein-Barr virus latent gene expression in uncultured peripheral blood lymphocytes. J Virol. 1992 Jun;66(6):3715–3724. doi: 10.1128/jvi.66.6.3715-3724.1992. ["VSports手机版" DOI] [PMC free article] [PubMed] [Google Scholar]
  206. Radkov S. A., Bain M., Farrell P. J., West M., Rowe M., Allday M. J. Epstein-Barr virus EBNA3C represses Cp, the major promoter for EBNA expression, but has no effect on the promoter of the cell gene CD21. J Virol. 1997 Nov;71(11):8552–8562. doi: 10.1128/jvi.71.11.8552-8562.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  207. Radkov S. A., Touitou R., Brehm A., Rowe M., West M., Kouzarides T., Allday M. J. Epstein-Barr virus nuclear antigen 3C interacts with histone deacetylase to repress transcription. J Virol. 1999 Jul;73(7):5688–5697. doi: 10.1128/jvi.73.7.5688-5697.1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  208. Ragona G., Sirianni M. C., Soddu S., Vercelli B., Sebastiani G., Piccoli M., Aiuti F. Evidence for disregulation in the control of Epstein-Barr virus latency in patients with AIDS-related complex. Clin Exp Immunol. 1986 Oct;66(1):17–24. ["VSports手机版" PMC free article] [PubMed] [Google Scholar]
  209. Rawlins D. R., Milman G., Hayward S. D., Hayward G. S. Sequence-specific DNA binding of the Epstein-Barr virus nuclear antigen (EBNA-1) to clustered sites in the plasmid maintenance region. Cell. 1985 Oct;42(3):859–868. doi: 10.1016/0092-8674(85)90282-x. [DOI] [PubMed] [Google Scholar]
  210. Reedman B. M., Klein G. Cellular localization of an Epstein-Barr virus (EBV)-associated complement-fixing antigen in producer and non-producer lymphoblastoid cell lines. Int J Cancer. 1973 May;11(3):499–520. doi: 10.1002/ijc.2910110302. [DOI] [PubMed] [Google Scholar]
  211. Reisman D., Sugden B. trans activation of an Epstein-Barr viral transcriptional enhancer by the Epstein-Barr viral nuclear antigen 1. Mol Cell Biol. 1986 Nov;6(11):3838–3846. doi: 10.1128/mcb.6.11.3838. [DOI (V体育ios版)] [PMC free article] [PubMed] [Google Scholar]
  212. Reth M. Antigen receptor tail clue. Nature. 1989 Mar 30;338(6214):383–384. doi: 10.1038/338383b0. [DOI] [PubMed] [Google Scholar]
  213. Rickinson A. B., Finerty S., Epstein M. A. Mechanism of the establishment of Epstein-Barr virus genome-containing lymphoid cell lines from infectious mononucleosis patients: studies with phosphonoacetate. Int J Cancer. 1977 Dec 15;20(6):861–868. doi: 10.1002/ijc.2910200607. [DOI (VSports最新版本)] [PubMed] [Google Scholar]
  214. Rickinson A. B., Gregory C. D., Young L. S. Viruses and cancer risks: outgrowth of Epstein-Barr virus-positive Burkitt's lymphoma in the immune host. Med Oncol Tumor Pharmacother. 1987;4(3-4):177–186. doi: 10.1007/BF02934513. [DOI] [PubMed] [Google Scholar]
  215. Rickinson A. B., Jarvis J. E., Crawford D. H., Epstein M. A. Observations on the type of infection by Epstein-Barr virus in peripheral lymphoid cells of patients with infectious mononucleosis. Int J Cancer. 1974 Dec 15;14(6):704–715. doi: 10.1002/ijc.2910140603. [DOI] [PubMed] [Google Scholar]
  216. Rickinson A. B., Moss D. J. Human cytotoxic T lymphocyte responses to Epstein-Barr virus infection. Annu Rev Immunol. 1997;15:405–431. doi: 10.1146/annurev.immunol.15.1.405. [DOI] [PubMed] [Google Scholar]
  217. Robertson E. S., Grossman S., Johannsen E., Miller C., Lin J., Tomkinson B., Kieff E. Epstein-Barr virus nuclear protein 3C modulates transcription through interaction with the sequence-specific DNA-binding protein J kappa. J Virol. 1995 May;69(5):3108–3116. doi: 10.1128/jvi.69.5.3108-3116.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  218. Robertson E. S., Tomkinson B., Kieff E. An Epstein-Barr virus with a 58-kilobase-pair deletion that includes BARF0 transforms B lymphocytes in vitro. J Virol. 1994 Mar;68(3):1449–1458. doi: 10.1128/jvi.68.3.1449-1458.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  219. Robertson E., Kieff E. Reducing the complexity of the transforming Epstein-Barr virus genome to 64 kilobase pairs. J Virol. 1995 Feb;69(2):983–993. doi: 10.1128/jvi.69.2.983-993.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  220. Rogers R. P., Woisetschlaeger M., Speck S. H. Alternative splicing dictates translational start in Epstein-Barr virus transcripts. EMBO J. 1990 Jul;9(7):2273–2277. doi: 10.1002/j.1460-2075.1990.tb07398.x. ["VSports手机版" DOI] [PMC free article] [PubMed] [Google Scholar]
  221. Rooney C., Howe J. G., Speck S. H., Miller G. Influence of Burkitt's lymphoma and primary B cells on latent gene expression by the nonimmortalizing P3J-HR-1 strain of Epstein-Barr virus. J Virol. 1989 Apr;63(4):1531–1539. doi: 10.1128/jvi.63.4.1531-1539.1989. [DOI (VSports)] [PMC free article] [PubMed] [Google Scholar]
  222. Rowe D. T., Farrell P. J., Miller G. Novel nuclear antigens recognized by human sera in lymphocytes latently infected by Epstein-Barr virus. Virology. 1987 Jan;156(1):153–162. doi: 10.1016/0042-6822(87)90446-6. [VSports - DOI] [PubMed] [Google Scholar]
  223. Rowe M., Khanna R., Jacob C. A., Argaet V., Kelly A., Powis S., Belich M., Croom-Carter D., Lee S., Burrows S. R. Restoration of endogenous antigen processing in Burkitt's lymphoma cells by Epstein-Barr virus latent membrane protein-1: coordinate up-regulation of peptide transporters and HLA-class I antigen expression. Eur J Immunol. 1995 May;25(5):1374–1384. doi: 10.1002/eji.1830250536. [DOI (V体育平台登录)] [PubMed] [Google Scholar]
  224. Ruf I. K., Rhyne P. W., Yang H., Borza C. M., Hutt-Fletcher L. M., Cleveland J. L., Sample J. T. Epstein-barr virus regulates c-MYC, apoptosis, and tumorigenicity in Burkitt lymphoma. Mol Cell Biol. 1999 Mar;19(3):1651–1660. doi: 10.1128/mcb.19.3.1651. [DOI] [PMC free article] [PubMed] [Google Scholar]
  225. Sakai T., Taniguchi Y., Tamura K., Minoguchi S., Fukuhara T., Strobl L. J., Zimber-Strobl U., Bornkamm G. W., Honjo T. Functional replacement of the intracellular region of the Notch1 receptor by Epstein-Barr virus nuclear antigen 2. J Virol. 1998 Jul;72(7):6034–6039. doi: 10.1128/jvi.72.7.6034-6039.1998. ["V体育平台登录" DOI] [PMC free article] [PubMed] [Google Scholar]
  226. Sample J., Liebowitz D., Kieff E. Two related Epstein-Barr virus membrane proteins are encoded by separate genes. J Virol. 1989 Feb;63(2):933–937. doi: 10.1128/jvi.63.2.933-937.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  227. Sample J., Young L., Martin B., Chatman T., Kieff E., Rickinson A., Kieff E. Epstein-Barr virus types 1 and 2 differ in their EBNA-3A, EBNA-3B, and EBNA-3C genes. J Virol. 1990 Sep;64(9):4084–4092. doi: 10.1128/jvi.64.9.4084-4092.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  228. Sandberg M., Hammerschmidt W., Sugden B. Characterization of LMP-1's association with TRAF1, TRAF2, and TRAF3. J Virol. 1997 Jun;71(6):4649–4656. doi: 10.1128/jvi.71.6.4649-4656.1997. [V体育平台登录 - DOI] [PMC free article] [PubMed] [Google Scholar]
  229. Sauter M., Boos H., Hirsch F., Mueller-Lantzsch N. Characterization of a latent protein encoded by the large internal repeats and the BamHI Y fragment of the Epstein-Barr virus (EBV) genome. Virology. 1988 Oct;166(2):586–590. doi: 10.1016/0042-6822(88)90530-2. [VSports app下载 - DOI] [PubMed] [Google Scholar]
  230. Schaefer B. C., Paulson E., Strominger J. L., Speck S. H. Constitutive activation of Epstein-Barr virus (EBV) nuclear antigen 1 gene transcription by IRF1 and IRF2 during restricted EBV latency. Mol Cell Biol. 1997 Feb;17(2):873–886. doi: 10.1128/mcb.17.2.873. [VSports手机版 - DOI] [PMC free article] [PubMed] [Google Scholar]
  231. Schlager S., Speck S. H., Woisetschläger M. Transcription of the Epstein-Barr virus nuclear antigen 1 (EBNA1) gene occurs before induction of the BCR2 (Cp) EBNA gene promoter during the initial stages of infection in B cells. J Virol. 1996 Jun;70(6):3561–3570. doi: 10.1128/jvi.70.6.3561-3570.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  232. Scholle F., Longnecker R., Raab-Traub N. Epithelial cell adhesion to extracellular matrix proteins induces tyrosine phosphorylation of the Epstein-Barr virus latent membrane protein 2: a role for C-terminal Src kinase. J Virol. 1999 Jun;73(6):4767–4775. doi: 10.1128/jvi.73.6.4767-4775.1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  233. Schroeter E. H., Kisslinger J. A., Kopan R. Notch-1 signalling requires ligand-induced proteolytic release of intracellular domain. Nature. 1998 May 28;393(6683):382–386. doi: 10.1038/30756. [DOI] [PubMed] [Google Scholar]
  234. Schweisguth F., Posakony J. W. Suppressor of Hairless, the Drosophila homolog of the mouse recombination signal-binding protein gene, controls sensory organ cell fates. Cell. 1992 Jun 26;69(7):1199–1212. doi: 10.1016/0092-8674(92)90641-o. [DOI] [PubMed] [Google Scholar]
  235. Sculley D. G., Sculley T. B., Pope J. H. Reactions of sera from patients with rheumatoid arthritis, systemic lupus erythematosus and infectious mononucleosis to Epstein-Barr virus-induced polypeptides. J Gen Virol. 1986 Oct;67(Pt 10):2253–2258. doi: 10.1099/0022-1317-67-10-2253. [DOI] [PubMed] [Google Scholar]
  236. Sculley T. B., Walker P. J., Moss D. J., Pope J. H. Identification of multiple Epstein-Barr virus-induced nuclear antigens with sera from patients with rheumatoid arthritis. J Virol. 1984 Oct;52(1):88–93. doi: 10.1128/jvi.52.1.88-93.1984. ["V体育ios版" DOI] [PMC free article] [PubMed] [Google Scholar]
  237. Seeler J. S., Dejean A. The PML nuclear bodies: actors or extras? Curr Opin Genet Dev. 1999 Jun;9(3):362–367. doi: 10.1016/s0959-437x(99)80054-9. [DOI] [PubMed] [Google Scholar]
  238. Silins S. L., Sculley T. B. Modulation of vimentin, the CD40 activation antigen and Burkitt's lymphoma antigen (CD77) by the Epstein-Barr virus nuclear antigen EBNA-4. Virology. 1994 Jul;202(1):16–24. doi: 10.1006/viro.1994.1317. ["VSports" DOI] [PubMed] [Google Scholar]
  239. Sinclair A. J., Palmero I., Peters G., Farrell P. J. EBNA-2 and EBNA-LP cooperate to cause G0 to G1 transition during immortalization of resting human B lymphocytes by Epstein-Barr virus. EMBO J. 1994 Jul 15;13(14):3321–3328. doi: 10.1002/j.1460-2075.1994.tb06634.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  240. Sixbey J. W., Nedrud J. G., Raab-Traub N., Hanes R. A., Pagano J. S. Epstein-Barr virus replication in oropharyngeal epithelial cells. N Engl J Med. 1984 May 10;310(19):1225–1230. doi: 10.1056/NEJM198405103101905. [DOI] [PubMed] [Google Scholar]
  241. Sjöblom A., Nerstedt A., Jansson A., Rymo L. Domains of the Epstein-Barr virus nuclear antigen 2 (EBNA2) involved in the transactivation of the latent membrane protein 1 and the EBNA Cp promoters. J Gen Virol. 1995 Nov;76(Pt 11):2669–2678. doi: 10.1099/0022-1317-76-11-2669. [DOI] [PubMed] [Google Scholar]
  242. Skare J., Farley J., Strominger J. L., Fresen K. O., Cho M. S., zur Hausen H. Transformation by Epstein-Barr virus requires DNA sequences in the region of BamHI fragments Y and H. J Virol. 1985 Aug;55(2):286–297. doi: 10.1128/jvi.55.2.286-297.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  243. Speck P., Kline K. A., Cheresh P., Longnecker R. Epstein-Barr virus lacking latent membrane protein 2 immortalizes B cells with efficiency indistinguishable from that of wild-type virus. J Gen Virol. 1999 Aug;80(Pt 8):2193–2203. doi: 10.1099/0022-1317-80-8-2193. [DOI] [PubMed] [Google Scholar]
  244. Speck S. H., Pfitzner A., Strominger J. L. An Epstein-Barr virus transcript from a latently infected, growth-transformed B-cell line encodes a highly repetitive polypeptide. Proc Natl Acad Sci U S A. 1986 Dec;83(24):9298–9302. doi: 10.1073/pnas.83.24.9298. [DOI] [PMC free article] [PubMed] [Google Scholar]
  245. Speck S. H., Strominger J. L. Analysis of the transcript encoding the latent Epstein-Barr virus nuclear antigen I: a potentially polycistronic message generated by long-range splicing of several exons. Proc Natl Acad Sci U S A. 1985 Dec;82(24):8305–8309. doi: 10.1073/pnas.82.24.8305. [DOI] [PMC free article] [PubMed] [Google Scholar]
  246. Steven N. M., Annels N. E., Kumar A., Leese A. M., Kurilla M. G., Rickinson A. B. Immediate early and early lytic cycle proteins are frequent targets of the Epstein-Barr virus-induced cytotoxic T cell response. J Exp Med. 1997 May 5;185(9):1605–1617. doi: 10.1084/jem.185.9.1605. [DOI] [PMC free article] [PubMed] [Google Scholar]
  247. Strauch B., Andrews L. L., Siegel N., Miller G. Oropharyngeal excretion of Epstein-Barr virus by renal transplant recipients and other patients treated with immunosuppressive drugs. Lancet. 1974 Feb 16;1(7851):234–237. doi: 10.1016/s0140-6736(74)92546-x. [DOI] [PubMed] [Google Scholar]
  248. Struhl G., Adachi A. Nuclear access and action of notch in vivo. Cell. 1998 May 15;93(4):649–660. doi: 10.1016/s0092-8674(00)81193-9. [DOI] [PubMed] [Google Scholar]
  249. Sung N. S., Wilson J., Davenport M., Sista N. D., Pagano J. S. Reciprocal regulation of the Epstein-Barr virus BamHI-F promoter by EBNA-1 and an E2F transcription factor. Mol Cell Biol. 1994 Nov;14(11):7144–7152. doi: 10.1128/mcb.14.11.7144. [DOI (V体育平台登录)] [PMC free article] [PubMed] [Google Scholar]
  250. Swaminathan S., Hesselton R., Sullivan J., Kieff E. Epstein-Barr virus recombinants with specifically mutated BCRF1 genes. J Virol. 1993 Dec;67(12):7406–7413. doi: 10.1128/jvi.67.12.7406-7413.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  251. Swaminathan S., Huneycutt B. S., Reiss C. S., Kieff E. Epstein-Barr virus-encoded small RNAs (EBERs) do not modulate interferon effects in infected lymphocytes. J Virol. 1992 Aug;66(8):5133–5136. doi: 10.1128/jvi.66.8.5133-5136.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  252. Swaminathan S., Tomkinson B., Kieff E. Recombinant Epstein-Barr virus with small RNA (EBER) genes deleted transforms lymphocytes and replicates in vitro. Proc Natl Acad Sci U S A. 1991 Feb 15;88(4):1546–1550. doi: 10.1073/pnas.88.4.1546. [DOI] [PMC free article] [PubMed] [Google Scholar]
  253. Sylla B. S., Hung S. C., Davidson D. M., Hatzivassiliou E., Malinin N. L., Wallach D., Gilmore T. D., Kieff E., Mosialos G. Epstein-Barr virus-transforming protein latent infection membrane protein 1 activates transcription factor NF-kappaB through a pathway that includes the NF-kappaB-inducing kinase and the IkappaB kinases IKKalpha and IKKbeta. Proc Natl Acad Sci U S A. 1998 Aug 18;95(17):10106–10111. doi: 10.1073/pnas.95.17.10106. ["V体育ios版" DOI] [PMC free article] [PubMed] [Google Scholar]
  254. Szekely L., Pokrovskaja K., Jiang W. Q., de The H., Ringertz N., Klein G. The Epstein-Barr virus-encoded nuclear antigen EBNA-5 accumulates in PML-containing bodies. J Virol. 1996 Apr;70(4):2562–2568. doi: 10.1128/jvi.70.4.2562-2568.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  255. Szekely L., Selivanova G., Magnusson K. P., Klein G., Wiman K. G. EBNA-5, an Epstein-Barr virus-encoded nuclear antigen, binds to the retinoblastoma and p53 proteins. Proc Natl Acad Sci U S A. 1993 Jun 15;90(12):5455–5459. doi: 10.1073/pnas.90.12.5455. [DOI] [PMC free article] [PubMed] [Google Scholar]
  256. Takeshita H., Yoshizaki T., Miller W. E., Sato H., Furukawa M., Pagano J. S., Raab-Traub N. Matrix metalloproteinase 9 expression is induced by Epstein-Barr virus latent membrane protein 1 C-terminal activation regions 1 and 2. J Virol. 1999 Jul;73(7):5548–5555. doi: 10.1128/jvi.73.7.5548-5555.1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  257. Tao Q., Srivastava G., Chan A. C., Chung L. P., Loke S. L., Ho F. C. Evidence for lytic infection by Epstein-Barr virus in mucosal lymphocytes instead of nasopharyngeal epithelial cells in normal individuals. J Med Virol. 1995 Jan;45(1):71–77. doi: 10.1002/jmv.1890450114. ["VSports app下载" DOI] [PubMed] [Google Scholar]
  258. Tao Q., Srivastava G., Chan A. C., Ho F. C. Epstein-Barr-virus-infected nasopharyngeal intraepithelial lymphocytes. Lancet. 1995 May 20;345(8960):1309–1310. doi: 10.1016/s0140-6736(95)90960-5. [DOI] [PubMed] [Google Scholar]
  259. Tierney R. J., Steven N., Young L. S., Rickinson A. B. Epstein-Barr virus latency in blood mononuclear cells: analysis of viral gene transcription during primary infection and in the carrier state. J Virol. 1994 Nov;68(11):7374–7385. doi: 10.1128/jvi.68.11.7374-7385.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  260. Toczyski D. P., Matera A. G., Ward D. C., Steitz J. A. The Epstein-Barr virus (EBV) small RNA EBER1 binds and relocalizes ribosomal protein L22 in EBV-infected human B lymphocytes. Proc Natl Acad Sci U S A. 1994 Apr 12;91(8):3463–3467. doi: 10.1073/pnas.91.8.3463. [DOI] [PMC free article] [PubMed] [Google Scholar]
  261. Toczyski D. P., Steitz J. A. EAP, a highly conserved cellular protein associated with Epstein-Barr virus small RNAs (EBERs). EMBO J. 1991 Feb;10(2):459–466. doi: 10.1002/j.1460-2075.1991.tb07968.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  262. Toczyski D. P., Steitz J. A. The cellular RNA-binding protein EAP recognizes a conserved stem-loop in the Epstein-Barr virus small RNA EBER 1. Mol Cell Biol. 1993 Jan;13(1):703–710. doi: 10.1128/mcb.13.1.703. [DOI] [PMC free article] [PubMed] [Google Scholar]
  263. Tomkinson B., Kieff E. Second-site homologous recombination in Epstein-Barr virus: insertion of type 1 EBNA 3 genes in place of type 2 has no effect on in vitro infection. J Virol. 1992 Feb;66(2):780–789. doi: 10.1128/jvi.66.2.780-789.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  264. Tomkinson B., Robertson E., Kieff E. Epstein-Barr virus nuclear proteins EBNA-3A and EBNA-3C are essential for B-lymphocyte growth transformation. J Virol. 1993 Apr;67(4):2014–2025. doi: 10.1128/jvi.67.4.2014-2025.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  265. Tong X., Drapkin R., Reinberg D., Kieff E. The 62- and 80-kDa subunits of transcription factor IIH mediate the interaction with Epstein-Barr virus nuclear protein 2. Proc Natl Acad Sci U S A. 1995 Apr 11;92(8):3259–3263. doi: 10.1073/pnas.92.8.3259. [DOI] [PMC free article] [PubMed] [Google Scholar]
  266. Tong X., Drapkin R., Yalamanchili R., Mosialos G., Kieff E. The Epstein-Barr virus nuclear protein 2 acidic domain forms a complex with a novel cellular coactivator that can interact with TFIIE. Mol Cell Biol. 1995 Sep;15(9):4735–4744. doi: 10.1128/mcb.15.9.4735. [DOI] [PMC free article] [PubMed] [Google Scholar]
  267. Tong X., Wang F., Thut C. J., Kieff E. The Epstein-Barr virus nuclear protein 2 acidic domain can interact with TFIIB, TAF40, and RPA70 but not with TATA-binding protein. J Virol. 1995 Jan;69(1):585–588. doi: 10.1128/jvi.69.1.585-588.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  268. Tong X., Yalamanchili R., Harada S., Kieff E. The EBNA-2 arginine-glycine domain is critical but not essential for B-lymphocyte growth transformation; the rest of region 3 lacks essential interactive domains. J Virol. 1994 Oct;68(10):6188–6197. doi: 10.1128/jvi.68.10.6188-6197.1994. ["VSports注册入口" DOI] [PMC free article] [PubMed] [Google Scholar]
  269. Tosato G., Tanner J., Jones K. D., Revel M., Pike S. E. Identification of interleukin-6 as an autocrine growth factor for Epstein-Barr virus-immortalized B cells. J Virol. 1990 Jun;64(6):3033–3041. doi: 10.1128/jvi.64.6.3033-3041.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  270. Tovey M. G., Lenoir G., Begon-Lours J. Activation of latent Epstein-Barr virus by antibody to human IgM. Nature. 1978 Nov 16;276(5685):270–272. doi: 10.1038/276270a0. [DOI] [PubMed] [Google Scholar]
  271. Trumper P. A., Epstein M. A., Giovanella B. C. Activation in vitro by BUdR of a productive EB virus infection in the epithelial cells of nasopharyngeal carcinoma. Int J Cancer. 1976 May 15;17(5):578–587. doi: 10.1002/ijc.2910170505. [VSports注册入口 - DOI] [PubMed] [Google Scholar]
  272. Tsai C. N., Liu S. T., Chang Y. S. Identification of a novel promoter located within the Bam HI Q region of the Epstein-Barr virus genome for the EBNA 1 gene. DNA Cell Biol. 1995 Sep;14(9):767–776. doi: 10.1089/dna.1995.14.767. [DOI (VSports)] [PubMed] [Google Scholar]
  273. Uchida J., Yasui T., Takaoka-Shichijo Y., Muraoka M., Kulwichit W., Raab-Traub N., Kikutani H. Mimicry of CD40 signals by Epstein-Barr virus LMP1 in B lymphocyte responses. Science. 1999 Oct 8;286(5438):300–303. doi: 10.1126/science.286.5438.300. [DOI] [PubMed] [Google Scholar]
  274. Wade M., Allday M. J. Epstein-Barr virus suppresses a G(2)/M checkpoint activated by genotoxins. Mol Cell Biol. 2000 Feb;20(4):1344–1360. doi: 10.1128/mcb.20.4.1344-1360.2000. ["V体育官网入口" DOI] [PMC free article] [PubMed] [Google Scholar]
  275. Wakasugi N., Tagaya Y., Wakasugi H., Mitsui A., Maeda M., Yodoi J., Tursz T. Adult T-cell leukemia-derived factor/thioredoxin, produced by both human T-lymphotropic virus type I- and Epstein-Barr virus-transformed lymphocytes, acts as an autocrine growth factor and synergizes with interleukin 1 and interleukin 2. Proc Natl Acad Sci U S A. 1990 Nov;87(21):8282–8286. doi: 10.1073/pnas.87.21.8282. [DOI] [PMC free article] [PubMed] [Google Scholar]
  276. Waltzer L., Logeat F., Brou C., Israel A., Sergeant A., Manet E. The human J kappa recombination signal sequence binding protein (RBP-J kappa) targets the Epstein-Barr virus EBNA2 protein to its DNA responsive elements. EMBO J. 1994 Dec 1;13(23):5633–5638. doi: 10.1002/j.1460-2075.1994.tb06901.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  277. Waltzer L., Perricaudet M., Sergeant A., Manet E. Epstein-Barr virus EBNA3A and EBNA3C proteins both repress RBP-J kappa-EBNA2-activated transcription by inhibiting the binding of RBP-J kappa to DNA. J Virol. 1996 Sep;70(9):5909–5915. doi: 10.1128/jvi.70.9.5909-5915.1996. ["VSports在线直播" DOI] [PMC free article] [PubMed] [Google Scholar]
  278. Wang D., Liebowitz D., Kieff E. An EBV membrane protein expressed in immortalized lymphocytes transforms established rodent cells. Cell. 1985 Dec;43(3 Pt 2):831–840. doi: 10.1016/0092-8674(85)90256-9. ["V体育2025版" DOI] [PubMed] [Google Scholar]
  279. Wang D., Liebowitz D., Wang F., Gregory C., Rickinson A., Larson R., Springer T., Kieff E. Epstein-Barr virus latent infection membrane protein alters the human B-lymphocyte phenotype: deletion of the amino terminus abolishes activity. J Virol. 1988 Nov;62(11):4173–4184. doi: 10.1128/jvi.62.11.4173-4184.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  280. Wang F., Gregory C. D., Rowe M., Rickinson A. B., Wang D., Birkenbach M., Kikutani H., Kishimoto T., Kieff E. Epstein-Barr virus nuclear antigen 2 specifically induces expression of the B-cell activation antigen CD23. Proc Natl Acad Sci U S A. 1987 May;84(10):3452–3456. doi: 10.1073/pnas.84.10.3452. [V体育官网入口 - DOI] [PMC free article] [PubMed] [Google Scholar]
  281. Wang F., Gregory C., Sample C., Rowe M., Liebowitz D., Murray R., Rickinson A., Kieff E. Epstein-Barr virus latent membrane protein (LMP1) and nuclear proteins 2 and 3C are effectors of phenotypic changes in B lymphocytes: EBNA-2 and LMP1 cooperatively induce CD23. J Virol. 1990 May;64(5):2309–2318. doi: 10.1128/jvi.64.5.2309-2318.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  282. Wang F., Tsang S. F., Kurilla M. G., Cohen J. I., Kieff E. Epstein-Barr virus nuclear antigen 2 transactivates latent membrane protein LMP1. J Virol. 1990 Jul;64(7):3407–3416. doi: 10.1128/jvi.64.7.3407-3416.1990. ["V体育官网入口" DOI] [PMC free article] [PubMed] [Google Scholar]
  283. Wang L., Grossman S. R., Kieff E. Epstein-Barr virus nuclear protein 2 interacts with p300, CBP, and PCAF histone acetyltransferases in activation of the LMP1 promoter. Proc Natl Acad Sci U S A. 2000 Jan 4;97(1):430–435. doi: 10.1073/pnas.97.1.430. [DOI] [PMC free article] [PubMed] [Google Scholar]
  284. Weiss L. M., Movahed L. A. In situ demonstration of Epstein-Barr viral genomes in viral-associated B cell lymphoproliferations. Am J Pathol. 1989 Mar;134(3):651–659. [PMC free article] [PubMed] [Google Scholar]
  285. Wilson J. B., Bell J. L., Levine A. J. Expression of Epstein-Barr virus nuclear antigen-1 induces B cell neoplasia in transgenic mice. EMBO J. 1996 Jun 17;15(12):3117–3126. [PMC free article] [PubMed] [Google Scholar]
  286. Wilson J. B., Weinberg W., Johnson R., Yuspa S., Levine A. J. Expression of the BNLF-1 oncogene of Epstein-Barr virus in the skin of transgenic mice induces hyperplasia and aberrant expression of keratin 6. Cell. 1990 Jun 29;61(7):1315–1327. doi: 10.1016/0092-8674(90)90695-b. [DOI] [PubMed] [Google Scholar]
  287. Woisetschlaeger M., Jin X. W., Yandava C. N., Furmanski L. A., Strominger J. L., Speck S. H. Role for the Epstein-Barr virus nuclear antigen 2 in viral promoter switching during initial stages of infection. Proc Natl Acad Sci U S A. 1991 May 1;88(9):3942–3946. doi: 10.1073/pnas.88.9.3942. [DOI] [PMC free article] [PubMed] [Google Scholar]
  288. Woisetschlaeger M., Strominger J. L., Speck S. H. Mutually exclusive use of viral promoters in Epstein-Barr virus latently infected lymphocytes. Proc Natl Acad Sci U S A. 1989 Sep;86(17):6498–6502. doi: 10.1073/pnas.86.17.6498. [DOI] [PMC free article] [PubMed] [Google Scholar]
  289. Wold W. S., Hermiston T. W., Tollefson A. E. Adenovirus proteins that subvert host defenses. Trends Microbiol. 1994 Nov;2(11):437–443. doi: 10.1016/0966-842x(94)90801-x. [VSports最新版本 - DOI] [PubMed] [Google Scholar]
  290. Wolf H., Haus M., Wilmes E. Persistence of Epstein-Barr virus in the parotid gland. J Virol. 1984 Sep;51(3):795–798. doi: 10.1128/jvi.51.3.795-798.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  291. Wolf H., zur Hausen H., Becker V. EB viral genomes in epithelial nasopharyngeal carcinoma cells. Nat New Biol. 1973 Aug 22;244(138):245–247. doi: 10.1038/newbio244245a0. [DOI (V体育2025版)] [PubMed] [Google Scholar]
  292. Wu D. Y., Kalpana G. V., Goff S. P., Schubach W. H. Epstein-Barr virus nuclear protein 2 (EBNA2) binds to a component of the human SNF-SWI complex, hSNF5/Ini1. J Virol. 1996 Sep;70(9):6020–6028. doi: 10.1128/jvi.70.9.6020-6028.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  293. Yalamanchili R., Harada S., Kieff E. The N-terminal half of EBNA2, except for seven prolines, is not essential for primary B-lymphocyte growth transformation. J Virol. 1996 Apr;70(4):2468–2473. doi: 10.1128/jvi.70.4.2468-2473.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  294. Yalamanchili R., Tong X., Grossman S., Johannsen E., Mosialos G., Kieff E. Genetic and biochemical evidence that EBNA 2 interaction with a 63-kDa cellular GTG-binding protein is essential for B lymphocyte growth transformation by EBV. Virology. 1994 Nov 1;204(2):634–641. doi: 10.1006/viro.1994.1578. [DOI] [PubMed] [Google Scholar]
  295. Yang X., He Z., Xin B., Cao L. LMP1 of Epstein-Barr virus suppresses cellular senescence associated with the inhibition of p16INK4a expression. Oncogene. 2000 Apr 13;19(16):2002–2013. doi: 10.1038/sj.onc.1203515. [DOI (VSports在线直播)] [PubMed] [Google Scholar]
  296. Yao Q. Y., Rickinson A. B., Epstein M. A. A re-examination of the Epstein-Barr virus carrier state in healthy seropositive individuals. Int J Cancer. 1985 Jan 15;35(1):35–42. doi: 10.1002/ijc.2910350107. [DOI] [PubMed] [Google Scholar]
  297. Yao Q. Y., Rickinson A. B., Gaston J. S., Epstein M. A. In vitro analysis of the Epstein-Barr virus: host balance in long-term renal allograft recipients. Int J Cancer. 1985 Jan 15;35(1):43–49. doi: 10.1002/ijc.2910350108. [DOI] [PubMed] [Google Scholar]
  298. Yates J. L., Camiolo S. M., Bashaw J. M. The minimal replicator of Epstein-Barr virus oriP. J Virol. 2000 May;74(10):4512–4522. doi: 10.1128/jvi.74.10.4512-4522.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  299. Yates J., Warren N., Reisman D., Sugden B. A cis-acting element from the Epstein-Barr viral genome that permits stable replication of recombinant plasmids in latently infected cells. Proc Natl Acad Sci U S A. 1984 Jun;81(12):3806–3810. doi: 10.1073/pnas.81.12.3806. [VSports - DOI] [PMC free article] [PubMed] [Google Scholar]
  300. Ye B. H., Cattoretti G., Shen Q., Zhang J., Hawe N., de Waard R., Leung C., Nouri-Shirazi M., Orazi A., Chaganti R. S. The BCL-6 proto-oncogene controls germinal-centre formation and Th2-type inflammation. Nat Genet. 1997 Jun;16(2):161–170. doi: 10.1038/ng0697-161. ["VSports app下载" DOI] [PubMed] [Google Scholar]
  301. Yoshizaki T., Sato H., Furukawa M., Pagano J. S. The expression of matrix metalloproteinase 9 is enhanced by Epstein-Barr virus latent membrane protein 1. Proc Natl Acad Sci U S A. 1998 Mar 31;95(7):3621–3626. doi: 10.1073/pnas.95.7.3621. [DOI] [PMC free article] [PubMed] [Google Scholar]
  302. Zhang L., Pagano J. S. IRF-7, a new interferon regulatory factor associated with Epstein-Barr virus latency. Mol Cell Biol. 1997 Oct;17(10):5748–5757. doi: 10.1128/mcb.17.10.5748. [VSports最新版本 - DOI] [PMC free article] [PubMed] [Google Scholar]
  303. Zhang L., Pagano J. S. Interferon regulatory factor 2 represses the Epstein-Barr virus BamHI Q latency promoter in type III latency. Mol Cell Biol. 1999 Apr;19(4):3216–3223. doi: 10.1128/mcb.19.4.3216. [DOI] [PMC free article] [PubMed] [Google Scholar]
  304. Zhang Q., Brooks L., Busson P., Wang F., Charron D., Kieff E., Rickinson A. B., Tursz T. Epstein-Barr virus (EBV) latent membrane protein 1 increases HLA class II expression in an EBV-negative B cell line. Eur J Immunol. 1994 Jun;24(6):1467–1470. doi: 10.1002/eji.1830240635. [DOI] [PubMed] [Google Scholar]
  305. Zhao B., Marshall D. R., Sample C. E. A conserved domain of the Epstein-Barr virus nuclear antigens 3A and 3C binds to a discrete domain of Jkappa. J Virol. 1996 Jul;70(7):4228–4236. doi: 10.1128/jvi.70.7.4228-4236.1996. ["VSports最新版本" DOI] [PMC free article] [PubMed] [Google Scholar]
  306. Zhao B., Sample C. E. Epstein-barr virus nuclear antigen 3C activates the latent membrane protein 1 promoter in the presence of Epstein-Barr virus nuclear antigen 2 through sequences encompassing an spi-1/Spi-B binding site. J Virol. 2000 Jun;74(11):5151–5160. doi: 10.1128/jvi.74.11.5151-5160.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  307. Zimber-Strobl U., Kempkes B., Marschall G., Zeidler R., Van Kooten C., Banchereau J., Bornkamm G. W., Hammerschmidt W. Epstein-Barr virus latent membrane protein (LMP1) is not sufficient to maintain proliferation of B cells but both it and activated CD40 can prolong their survival. EMBO J. 1996 Dec 16;15(24):7070–7078. [PMC free article] [PubMed] [Google Scholar]
  308. Zimber-Strobl U., Kremmer E., Grässer F., Marschall G., Laux G., Bornkamm G. W. The Epstein-Barr virus nuclear antigen 2 interacts with an EBNA2 responsive cis-element of the terminal protein 1 gene promoter. EMBO J. 1993 Jan;12(1):167–175. doi: 10.1002/j.1460-2075.1993.tb05642.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  309. Zimber-Strobl U., Strobl L. J., Meitinger C., Hinrichs R., Sakai T., Furukawa T., Honjo T., Bornkamm G. W. Epstein-Barr virus nuclear antigen 2 exerts its transactivating function through interaction with recombination signal binding protein RBP-J kappa, the homologue of Drosophila Suppressor of Hairless. EMBO J. 1994 Oct 17;13(20):4973–4982. doi: 10.1002/j.1460-2075.1994.tb06824.x. [DOI (V体育ios版)] [PMC free article] [PubMed] [Google Scholar]
  310. de Campos-Lima P. O., Torsteinsdóttir S., Cuomo L., Klein G., Sulitzeanu D., Masucci M. G. Antigen processing and presentation by EBV-carrying cell lines: cell-phenotype dependence and influence of the EBV-encoded LMP1. Int J Cancer. 1993 Mar 12;53(5):856–862. doi: 10.1002/ijc.2910530525. [DOI] [PubMed] [Google Scholar]
  311. von Knebel Doeberitz M., Bornkamm G. W., zur Hausen H. Establishment of spontaneously outgrowing lymphoblastoid cell lines with Cyclosporin A. Med Microbiol Immunol. 1983;172(2):87–99. doi: 10.1007/BF02124509. ["VSports注册入口" DOI] [PubMed] [Google Scholar]
  312. zur Hausen H., O'Neill F. J., Freese U. K., Hecker E. Persisting oncogenic herpesvirus induced by the tumour promotor TPA. Nature. 1978 Mar 23;272(5651):373–375. doi: 10.1038/272373a0. [DOI] [PubMed] [Google Scholar]

Articles from Philosophical Transactions of the Royal Society of London. Series B are provided here courtesy of The Royal Society VSports注册入口.

RESOURCES