"V体育2025版" Zinc Status Affects Glucose Homeostasis and Insulin Secretion in Patients with Thalassemia
(a) Blood glucose response to a 75-g oral glucose load in patients with Thalassemia with normal (n = 20) or low serum zinc (n = 10). Using analysis of variance, a trend towards a Zinc × time effect was observed, p = 0.10. Abnormal blood glucose level at 120 min is considered any value >140 mg/dL. Data presented as Mean ± SEM. Using analysis of covariance adjusted for baseline, a significant Zinc × time effect was observed, p = 0.048. There is a significant peak of glucose at 30 and 60 min post 75 g dose in patients with Normal Zn, which comes back to near baseline at 120 min. However, with patients with Low Zn, there are no significant differences at any of the time points post dose. (b) Serum insulin response to a 75-g oral glucose load in transfused patients with Thalassemia who had normal (n = 20) or low serum zinc (n = 10). Insulin Values above are raw Means ± SEM; Using analysis of covariance, adjusted for baseline, a trend towards a significant Zinc × time effect was observed, p = 0.06.
"> Figure 2Oral glucose tolerance test derived indices of insulin sensitivity and beta xell function in normal (n = 20) and low zinc (n = 10) groups. All indices were normalized to mean of 1 for the normal zinc group and shown as mean ± SEM. * indicates statistically significant difference by unpaired t-test (p < 0.05). SZn: Serum Zn, ISI: insulin sensitivity index (Matsuda), HOMA: Homeostatic Model Assessment—Insulin Resistance, IGI: Insulinogenic index, ODI: Oral Disposition Index. One subject with ODI > 4.0 in low zinc group was excluded from the analysis (see footnote to Table 1).
"> Figure 3(a) Blood glucose response to a 75-g oral glucose load in n = 5 patients with Thalassemia who had a decline in serum zinc, measured at two separate visits, two years apart. Values above are mean blood glucose ± SEM. (b) Serum insulin response to a 75-g oral glucose load in n = 5 patients with Thalassemia who had a decline in serum zinc, measured at two separate visits, two years apart. Insulin values above are raw means ± SEM.
">
Abstract
: Up to 20% of adult patients with Thalassemia major (Thal) live with diabetes, while 30% may be zinc deficient. The objective of this study was to explore the relationship between zinc status, impaired glucose tolerance and insulin sensitivity in Thal patients. Charts from thirty subjects (16 male, 27. 8 ± 9. 1 years) with Thal were reviewed. Patients with low serum zinc had significantly lower fasting insulin, insulinogenic and oral disposition indexes (all p < 0. 05) and elevated glucose response curve, following a standard 75 g oral load of glucose compared to those with normal serum zinc after controlling for baseline (group × time interaction p = 0. 048). Longitudinal data in five patients with a decline in serum zinc over a two year follow up period (−19 V体育官网入口. 0 ± 9. 6 μg/dL), showed consistent increases in fasting glucose (3. 6 ± 3. 2 mg/dL) and insulin to glucose ratios at 120 min post glucose dose (p = 0. 05). Taken together, these data suggest that the frequently present zinc deficiency in Thal patients is associated with decreased insulin secretion and reduced glucose disposal. Future zinc trials will require modeling of oral glucose tolerance test data and not simply measurement of static indices in order to understand the complexities of pancreatic function in the Thal patient. Keywords: Zinc; Diabetes; Thalassemia; Glucose intolerance .1. Introduction
2. Materials and Methods
3. Results
Results | Total | Low Zinc | Normal Zinc | p-value |
---|---|---|---|---|
n = 30 | n = 10 | n = 20 | ||
Male, n (%) | 16 (53%) | 6 (60%) | 10 (50%) | NS |
Age, years | 27.8 ± 9.1 | 29.2 ± 12.1 | 27.2 ± 7.4 | NS |
Serum Zinc, μg/dL | 76.6 ± 10.5 | 67.7 ± 3.9 | 81.0 ± 9.9 | 0.003 |
Serum Copper, μg/dL | 85.4 ± 25.4 | 86.6 ± 21.7 | 84.8 ± 27.6 | NS |
Height, cm | 160.5 ± 9.4 | 162.9 ± 12.5 | 159.3 ± 7.5 | NS |
Weight, kg | 57.8 ± 15.8 | 62.1 ± 22.6 | 55.7 ± 11.1 | NS |
Body Mass Index, kg/m2 | 22.3 ± 4.9 | 23.1 ± 7.0 | 21.9 ± 3.6 | NS |
Serum Ferritin, ng/mL * | 2,752 ± 2,537 | 2,004 ± 1,713 | 3,146 ± 2,842 | NS |
Fasting Glucose, mg/dL | 97.8 ± 15.1 | 99.0 ± 21.8 | 97.3 ± 11.1 | NS |
Abnormal Fasting Glucose, n (%) | 11 (37%) | 3 (30%) | 8 (40%) | NS |
Fasting Insulin, μIU/mL | 6.2 ± 4.9 | 4.1 ± 2.6 | 7.2 ± 5.4 | 0.04 |
Glucose at 120 min, mg/dL | 144 ± 57 | 165 ± 75 | 134 ± 45 | 0.16 |
Insulin at 120 min, μIU/mL | 35.8 ± 50.1 | 30.6 ± 24.1 | 38.3 ± 50.4 | NS |
Insulin/Glucose at 120 min | 0.239 ± 263 | 0.207 ± 0.152 | 0.255 ± 0.302 | NS |
Mean Glucose, mg/dL | 136 ± 33 | 109 ± 44 | 97 ± 27 | NS |
Mean Insulin, μIU/mL | 32 ± 29 | 21 ± 13 | 37 ± 39 | NS |
Glucose, Area Under the Curve | 15,316 ± 5,062 | 14,768 ± 7,629 | 15,590 ± 3,363 | NS |
Insulin, Area Under the Curve | 4,222 ± 4,055 | 2,965 ± 1,557 | 4,962 ± 4,877 | 0.13 |
Measures of Insulin Sensitivity | ||||
HOMA-IR | 1.49 ± 1.18 | 1.01 ± 0.67 | 1.74 ± 1.32 | 0.11 |
Insulin Sensitivity Index (ISI) | 9.09 ± 4.90 | 11.38 ± 5.01 | 7.95 ± 4.54 | 0.06 |
Measure of Beta Cell Function | ||||
Insulinogenic Index (IGI) | 0.66 ± 0.65 | 0.32 ± 0.38 | 0.84 ± 0.70 | 0.036 |
Disposition Index (ODI) | 4.44 ± 4.09 | 2.23 ± 2.73 | 5.50 ± 4.27 | 0.046 |
ID | OGTT Test | Age, Year | Body Mass Index, kg/m2 | Serum Zinc, μg/dL | Ferritin μg/L | Fasting Blood Glucose mg/dL | HOMA-IR | AUC Glucose mg/dL | Insulin/Glucose @120 min | ISI | ODI | IGI | Chelation, (mg/kg) |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
I | Pre | 13 | 17.1 | 86.0 | 3,414 | 84.0 | 1.2 | 10,515 | 0.103 | 13.7 | 3.92 | 0.29 | DFO (20) |
Post | 17 | 19.2 | 75.0 | 7,920 | 86.0 | 0.9 | 13,830 | 0.233 | 8.0 | 3.46 | 0.43 | DFO (31); DSX (39) | |
2 | Pre | 30 | 21.1 | 100.0 | 1,150 | 90.0 | 0.8 | 13,905 | 0.255 | 6.4 | 7.37 | 1.15 | DFO (13); DSX (26) |
Post | 32 | 20.4 | 67.0 | 1,100 | 91.0 | 1.2 | 18,420 | 0.661 | 4.7 | 5.31 | 1.13 | DFO (9); DSX (32) | |
3 | Pre | 17 | 20.4 | 95.0 | 833 | 100.0 | 0.6 | 15,030 | 0.133 | 6.0 | 7.17 | 1.19 | DFO (18); DSX (23) |
Post | 18 | 18.5 | 71.0 | 1,180 | 101.0 | 0.5 | 11,115 | 0.230 | 7.3 | 53.5$ | 7.33 | DFO (18); DFP (66) | |
4 | Pre | 25 | 23.7 | 71.0 | 278 | 84.0 | 1.9 | 15,705 | 0.162 | 14.0 | 5.23 | 0.37 | DSX (7) |
Post | 28 | 24.3 | 54.0 | 406 | 92.0 | 0.8 | 14,475 | 0.250 | 5.5 | 8.25 | 1.50 | DSX (24) | |
5 | Pre | 16 | 20.3 | 73.0 | 1,090 | 91.0 | 0.6 | 13,020 | 0.189 | 7.0 | 5.38 | 0.77 | DFO (12); DSX (32) |
Post | 17 | 20.3 | 63.0 | 1,230 | 97.0 | 0.4 | 15,180 | 0.283 | 4.6 | 3.12 | 0.68 | DSX (34) | |
Pre, Mean ± SD | 20.2 ± 7.0 | 20.5 ± 2.4 | 85.0 ± 12.9 | 1,353 ± 1,202 | 89.8 ± 6.6 | 1.0 ± 0.5 | 13,635 ± 2,026 | 0.168 ± 0.058 | 9.4 ± 4.1 | 5.8 ± 1.4 | 0.8 ± 0.4 | ||
Post, Mean ± SD | * 22.4 ± 7.1 | 20.5 ± 2.2 | * 66.0 ± 8.1 | 2,367 ± 3,122 | ^ 93.4 ± 5.8 | 0.8 ± 0.3 | 14,604 ± 2,631 | ^ 0.331 ± 0.185 | 6.0± 1.6 | 5.0 ± 2.3 | 2.2 ± 2.9 |
4. Discussion
VSports手机版 - Acknowledgments
Author Contributions (VSports注册入口)
Conflicts of Interest
References
- Martin, A.; Thompson, A.A. Thalassemias. Pediatr. Clin. North. Am. 2013, 60, 1383–1391. [VSports app下载 - Google Scholar] [CrossRef] [PubMed]
- Vichinsky, E.P. Changing patterns of thalassemia worldwide. Ann. N.Y. Acad. Sci. 2005, 1054, 18–24. [Google Scholar] [CrossRef] [PubMed]
- Vichinsky, E.P.; Macklin, E.A.; Waye, J.S.; Lorey, F.; Olivieri, N.F. Changes in the epidemiology of thalassemia in North America: A new Minority disease. Pediatrics 2005, 116, e818–e825. [Google Scholar] [CrossRef] [PubMed]
- de Assis, R.A.; Ribeiro, A.A.; Kay, F.U.; Rosemberg, L.A.; Nomura, C.H.; Loggetto, S.R.; Araujo, A.S.; Fabron Junior, A.; de Almeida Veríssimo, M.P.; Baldanzi, G.R.; et al. Pancreatic iron stores assessed by magnetic resonance imaging (MRI) in beta thalassemic patients. Eur. J. Radiol. 2012, 81, 1465–1470. [V体育平台登录 - Google Scholar] [CrossRef] [PubMed]
- Noetzli, L.J.; Coates, T.D.; Wood, J.C. Pancreatic iron loading in chronically transfused sickle cell disease is lower than in thalassaemia major. Br. J. Haematol. 2011, 152, 229–233. [Google Scholar] [CrossRef] [PubMed]
- Noetzli, L.J.; Mittelman, S.D.; Watanabe, R.M.; Coates, T.D.; Wood, J.C. Pancreatic iron and glucose dysregulation in thalassemia major. Am. J. Hematol. 2012, 87, 155–160. [Google Scholar] [CrossRef] [PubMed]
- Tsapas, A.; Vlachaki, E.; Christoforidis, A.; Sarigianni, M.; Bekjari, E.; Perifanis, V.; Tsapas, V.; Paletas, K.; Athanassiou-Metaxa, M. Insulin sensitivity assessment with euglycemic insulin clamp in adult beta-thalassaemia major patients. Eur. J. Haematol. 2007, 6, 526–530. ["V体育ios版" Google Scholar] [CrossRef] [PubMed]
- Christoforidis, A.; Perifanis, V.; Tsatra, I.; Vlachaki, E.; Athanassiou-Metaxa, M. Evolution of OGTT in patients with beta-thalassaemia major in relation to chelation therapy. Diabetes Res. Clin. Pract. 2007, 76, 6–11. ["V体育2025版" Google Scholar] [CrossRef] [PubMed]
- Jansen, J.; Karges, W.; Rink, L. Zinc and Diabetes: Clinical links and molecular mechanisms. J. Nutr. Biochem. 2009, 20, 399–417. [Google Scholar] [CrossRef] [PubMed]
- Capdor, J.; Foster, M.; Petocz, P.; Samman, S. Zinc and glycemic control: A meta-analysis of randomized placebo controlled supplementation trials in humans. J. Trace Elem. Med. Biol. 2013, 27, 137–142. [Google Scholar] [CrossRef] [PubMed]
- Fung, E.B.; King, J.C.; Kwiatkowski, J.L.; Huang, J.; Bachrach, L.K.; Sawyer, A.J.; Zemel, B.S.; Vichinsky, E.P. Zinc Supplementation Improves Bone Density in Young Patients with Thalassemia. Am. J. Clin. Nutr. 2013, 98, 960–971. [Google Scholar (VSports在线直播)] [CrossRef] [PubMed]
- Deshal, M.H.; Hooghoogh, A.H.; Kebryaeezadeh, A.; Kheirabadi, M.; Kazemi, S.; Nasseh, A.; Shariftabrizi, A.; Pasalar, P. Zinc deficiency aggravates abnormal glucose metabolism in thalassemia major patients. Med. Sci. Monit. 2007, 13, CR235–CR239. [Google Scholar]
- Fung, E.B.; Kawchak, D.A.; Zemel, B.S.; Ohene-Frempong, K.; Stallings, V.A. Plasma zinc is an Insensitive Predictor of Zinc Status: Use of Plasma Zinc in children with sickle cell disease. Nutr. Clin. Pract. 2002, 17, 365–372. [Google Scholar] [CrossRef] [PubMed]
- Hess, S.Y.; Peerson, J.M.; King, J.C.; Brown, K.H. Use of serum zinc concentration as an indicator of population zinc status. Food Nutr. Bull. 2007, 28, S403–S429. [Google Scholar] [PubMed]
- The Expert Committee on the Diagnosis and Classification of Diabetes Mellitus. Follow-up report on the diagnosis of diabetes mellitus. Diabetes Care 2003, 11, 3160–3167. [Google Scholar]
- Matsuda, M.; DeFronzo, R.A. Insulin sensitivity indices obtained from oral glucose tolerance testing: comparison with the euglycemic insulin clamp. Diabetes Care 1999, 22, 1462–1470. [Google Scholar] [CrossRef] [PubMed]
- Hanson, R.L.; Pratley, R.E.; Bogardus, C.; Venkat Narayan, K.M.; Roumain, J.M.L.; Imperatore, G.; Fagot-Campagna, A.; Pettitt, D.J.; Bennett, P.H.; Knowler, W.C. Evaluation of simple indices of insulin sensitivity and insulin secretion for use in epidemiologic studies. Am. J. Epidemiol. 2000, 151, 190–198. [Google Scholar] [CrossRef] [PubMed]
- Huber, A.M.; Gershoff, S.N. Effect of zinc deficiency in rats on insulin release from the pancreas. J. Nutr. 1973, 103, 1739–1744. [Google Scholar] [PubMed]
- Keller, S.R. Role of the insulin-regulated aminopeptidase IRAP in insulin action and diabetes. Biol. Pharm. Bull. 2004, 27, 761–764. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Tang, X.H.; Shay, N.F. Zinc has an insulin-like effect on glucose transport mediated by phosphoinositol-3-kinase and Akt in 3T3-L1 fibroblasts and adipocytes. J. Nutr. 2001, 131, 1414–1420. [V体育安卓版 - Google Scholar] [PubMed]
- Al-Maroof, R.A.; Al-Sharbatti, S.S. Serum zinc levels in diabetic patients and effect of zinc supplementation on glycemic control of type 2 diabetes. Saudi Med. J. 2006, 27, 344–350. [Google Scholar] [PubMed]
- Hashemipour, M.; Kelishadi, R.; Shapouri, J.; Sarrafzadegan, N.; Amini, M.; Tavakoli, N.; Movahedian-Attar, A.; Mirmoghtadaee, P.; Poursafa, P. Effect of zinc supplementation on insulin resistance and components of the metabolic syndrome in prepubertal obese children. Hormones 2009, 8, 279–285. [Google Scholar] [CrossRef] [PubMed]
- Cunningham, J.J.; Fu, A.; Mearkle, P.L.; Brown, R.G. Hyperzincuria in individuals with insulin-dependent diabetes mellitus: Concurrent zinc status and effect of high dose zinc supplementation. Metabolism 1994, 43, 1558–1562. [Google Scholar] [CrossRef]
- Al-Rafaie, F.N.; Wonke, B.; Wickens, D.G.; Aydinok, Y.; Fielding, A.; Hoffbrand, A.V. Zinc concentration in patients with iron overload receiving oral iron chelator 1,2 dimethyl-3-hydroxypyrid-4-one or desferrioxamine. J. Clin. Path 1994, 47, 657–660. [Google Scholar] [CrossRef]
- Failla, M.L.; Kiser, R.A. Altered tissue content and cytosol distribution of trace metals in experimental diabetes. J. Nutr. 1981, 111, 1900–1909. [Google Scholar] [PubMed]
- Fung, E.B.; Xu, Y.; Trachtenberg, F.; Olivieri, N.; Kwiatkowski, J.L.; Thompson, A.A.; Neufeld, E.J.; Boudreaux, J.; Quinn, C.; Vichinsky, E.P. Inadequate Dietary Intake in Patients with Thalassemia. J. Acad. Nutr. Dietetics 2012, 112, 980–990. [Google Scholar] [CrossRef] [PubMed]
- Bonfils, L.; Ellervik, C.; Friedrich, N.; Linneberg, A.; Sandholt, C.H.; Jørgensen, M.E.; Jørgensen, T.; Hansen, T.; Pedersen, O.; Allin, K.H. Fasting serum levels of ferritin are associated with impaired beta cell function and decreased insulin sensitivity: A population based study. Diabetologia 2015, 58, 523–533. [Google Scholar (VSports)] [CrossRef] [PubMed]
- Wang, C.H.; Wu, K.H.; Tsai, F.J.; Peng, C.-T.; Tsai, C.-H. Comparison of oral and subcutaneous iron chelation therapies in the prevention of major endocrinopathies in b-thalassemia major patients. Hemoglobin 2006, 30, 257–262. [Google Scholar] [CrossRef] [PubMed]
- Yuen, K.C.; Chong, L.E.; Riddle, M.C. Influence of glucocorticoids and growth hormone on insulin sensitivity in humans. Diabet. Med. 2013, 30, 651–663. [Google Scholar] [CrossRef] [PubMed]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fung, E.B.; Gildengorin, G.; Talwar, S.; Hagar, L.; Lal, A. Zinc Status Affects Glucose Homeostasis and Insulin Secretion in Patients with Thalassemia. Nutrients 2015, 7, 4296-4307. https://doi.org/10.3390/nu7064296
Fung EB, Gildengorin G, Talwar S, Hagar L, Lal A. Zinc Status Affects Glucose Homeostasis and Insulin Secretion in Patients with Thalassemia. Nutrients. 2015; 7(6):4296-4307. https://doi.org/10.3390/nu7064296
Chicago/Turabian StyleFung, Ellen B., Ginny Gildengorin, Siddhant Talwar, Leah Hagar, and Ashutosh Lal. 2015. "Zinc Status Affects Glucose Homeostasis and Insulin Secretion in Patients with Thalassemia" Nutrients 7, no. 6: 4296-4307. https://doi.org/10.3390/nu7064296
APA StyleFung, E. B., Gildengorin, G., Talwar, S., Hagar, L., & Lal, A. (2015). Zinc Status Affects Glucose Homeostasis and Insulin Secretion in Patients with Thalassemia. Nutrients, 7(6), 4296-4307. https://doi.org/10.3390/nu7064296