In This Article (V体育官网入口)

Summary

Here, we present a protocol to genetically edit CAR-T cells via a CRISPR/Cas9 system.

Abstract

Chimeric antigen receptor T (CAR-T) cell therapy is a cutting edge and potentially revolutionary new treatment option for cancer. However, there are significant limitations to its widespread use in the treatment of cancer. These limitations include the development of unique toxicities such as cytokine release syndrome (CRS) and neurotoxicity (NT) and limited expansion, effector functions, and anti-tumor activity in solid tumors. One strategy to enhance CAR-T efficacy and/or control toxicities of CAR-T cells is to edit the genome of the CAR-T cells themselves during CAR-T cell manufacturing V体育2025版. Here, we describe the use of CRISPR/Cas9 gene editing in CAR-T cells via transduction with a lentiviral construct containing a guide RNA to granulocyte macrophage colony-stimulating factor (GM-CSF) and Cas9. As an example, we describe CRISPR/Cas9 mediated knockout of GM-CSF. We have shown that these GM-CSFk/o CAR-T cells effectively produce less GM-CSF while maintaining critical T cell function and result in enhanced anti-tumor activity in vivo compared to wild type CAR-T cells.

Introduction

Chimeric antigen receptor T (CAR-T) cell therapy exhibits great promise in the treatment of cancer. 1,2 Two CAR-T cell therapies targeting CD19 (CART19) were recently approved in the United Stated and in Europe for the use in B cell malignancies after demonstrating striking results in multicenter clinical trials. 3,4,5 Barriers to more widespread use of CAR-T cells are limited activity in solid tumors and associated toxicities including cytokine release syndrome (CRS) and neurotoxicity (NT). 3 VSports.

Access restricted. Please log in or start a trial to view this content VSports app下载.

Protocol

This protocol follows the guidelines of Mayo Clinic's Institutional Review Board (IRB) and Institutional Biosafety Committee (IBC).

1. CART19 cell production

  1. T cell isolation, stimulation, and ex-vivo culture
    1. Carry out all cell culture work in a cell culture hood utilizing appropriate personal protective equipment. Harvest peripheral blood mononuclear cells (PBMCs) from de-identified normal donor blood cones collected during apheresis as these are known to be a viable source of PBMCs.13
    2. To isolate PBMCs, add 15 mL of a density gradient medium to a 50 mL density gradient separati....

Access restricted VSports手机版. Please log in or start a trial to view this content.

V体育2025版 - Results

Figure 1 shows reduction of GM-CSF in GM-CSFk/o CART19 cells. To verify that the genome of the T cells was altered to knockout GM-CSF, TIDE sequencing was used in the GM-CSFk/o CART19 cells (Figure 1A). CAR-T cell surface staining verifies that the T cells successfully express the CAR surface receptor in vitro by gating on live CD3+ cells (Figure 1B) V体育安卓版. Intracellular staining.

Access restricted V体育ios版. Please log in or start a trial to view this content.

"V体育平台登录" Discussion

In this report, we describe a methodology to utilize CRISPR/Cas9 technology to induce secondary modifications in CAR-T cells. Specifically, this is demonstrated using lentiviral transduction with a viral vector that contains gRNA targeting the gene of interest and Cas9 to generate GM-CSFk/o CART19 cells VSports最新版本. We had previously shown that GM-CSF neutralization ameliorates CRS and NT in a xenograft model. 12 As previously described, GM-CSFk/o CAR-T cells allow for the inhib.

Access restricted. Please log in or start a trial to view this content V体育平台登录.

Disclosures

SSK is an inventor on patents in the field of CAR T-cell therapy that are licensed to Novartis (under an agreement between Mayo Clinic, University of Pennsylvania, and Novartis). These studies were funded in part by a grant from Humanigen (SSK). RMS, MJC, RS, and SSK are inventors on patents related to this work. The laboratory (SSK) receives funding from Tolero, Humanigen, Kite, Lentigen, Morphosys, and Actinium. VSports注册入口.

V体育平台登录 - Acknowledgements

This work was supported through grants from K12CA090628 (SSK), the National Comprehensive Cancer Network (SSK), the Mayo Clinic Center for Individualized Medicine (SSK), the Predolin Foundation (SSK), the Mayo Clinic Office of Translation to Practice (SSK), and the Mayo Clinic Medical Scientist Training Program Robert L V体育官网入口. Howell Physician-Scientist Scholarship (RMS).

....

Access restricted. Please log in or start a trial to view this content.

Materials

List of materials used in this article
NameCompanyCatalog NumberComments
CD3 Monoclonal Antibody (OKT3), PE, eBioscienceInvitrogen12-0037-42
CD3 Monoclonal Antibody (UCHT1), APC, eBioscienceInvitrogen17-0038-42
Choice Taq Blue MastermixDenville ScientificC775Y51
CTS (Cell Therapy Systems) Dynabeads CD3/CD28Gibco40203D
CytoFLEX System B4-R2-V2Beckman CoulterC10343flow cytometer
dimethyl sulfoxideMillipore SigmaD2650-100ML
Dulbecco's Phosphate-Buffered SalineGibco14190-144 
Dynabeads MPC-S (Magnetic Particle Concentrator)Applied BiosystemsA13346
Easy 50 EasySep MagnetSTEMCELL Technologies18002
EasySep Human T Cell Isolation Kit STEMCELL Technologies17951negative selection magnetic beads; 17951RF includes tips and buffer
Fetal bovine serumMillipore SigmaF8067
FITC Mouse Anti-Human CD107a BD Pharmingen555800
Fixation Medium (Medium A)InvitrogenGAS001S100
GenCRISPR gRNA Construct: Name: CSF2
CRISPR guide RNA 1; Species: Human, Vector:
pLentiCRISPR v2; Resistance: Ampicillin; Copy number:
High; Plasmid preparation: Standard delivery: 4 μg (Free
of charge)
GenScriptN/Acustom order
Goat anti-Mouse IgG (H+L) Cross-Adsorbed Secondary Antibody, Alexa Fluor 647InvitrogenA-21235
https://tide.nki.nl.Desktop Genetics
Human AB Serum; Male Donors; type AB; USCorning35-060-CI
IFN gamma Monoclonal Antibody (4S.B3), APC-eFluor 780, eBioscienceInvitrogen47-7319-42
Lipofectamine 3000 Transfection ReagentInvitrogenL3000075
LIVE/DEAD Fixable Aqua Dead Cell Stain Kit, for 405 nm excitationInvitrogenL34966
LymphoprepSTEMCELL Technologies07851
Monensin Solution, 1000XBioLegend420701
Mouse Anti-Human CD28 Clone CD28.2BD Pharmingen559770
Mouse Anti-Human CD49d Clone 9F10BD Pharmingen561892
Mouse Anti-Human MIP-1β PE-Cy7BD Pharmingen560687
Mr. Frosty Freezing ContainerThermo Scientific5100-0001
NALM6, clone G5 ATCCCRL-3273acute lymphoblastic leukemia cell line
Nuclease Free WaterPromegaP119C
Olympus Vacuum Filter Systems, 500 mL, PES Membrane, 0.22uM, sterileGenesee Scientific25-227
Nalgene Rapid-Flow Sterile Disposable Filter Units with CN Membrane 0.45uMThermo Scientific Nalgene450-0045
Opti-MEM I Reduced-Serum Medium (1X), LiquidGibco31985-070
PE-CF594 Mouse Anti-Human IL-2BD Horizon562384
Penicillin-Streptomycin-Glutamine (100X), LiquidGibco10378-016
Permeabilization Medium (Medium B)InvitrogenGAS002S100
PureLink Genomic DNA Mini KitInvitrogenK182001
Puromycin DihydrochlorideMP Biomedicals, Inc.0210055210
QIAquick Gel Extraction KitQIAGEN28704
Rat Anti-Human GM-CSF BV421BD Horizon562930
RoboSep-SSTEMCELL Technologies21000Fully Automated Cell Separator
SepMate-50 (IVD)STEMCELL Technologies85450
Sodium Azide, 5% (w/v)Ricca Chemical7144.8-16
X-VIVO 15 Serum-free Hematopoietic Cell MediumLonza04-418Q

"VSports手机版" References

  1. Kenderian, S. S., Ruella, M., Gill, S., Kalos, M. Chimeric antigen receptor T-cell therapy to target hematologic malignancies. Cancer Research. 74 (22), 6383-6389 (2014).
  2. Lim, W. A., June, C. H. The Principles of Engineering Immune Cells to Treat Cancer. Cell. 168

Access restricted. Please log in or start a trial to view this content.

Reprints and Permissions

Request permission to reuse the text or figures of this JoVE article

Request Permission

Explore More Articles

CRISPR Cas9CAR T CellsGenetic ModificationGM CSFT cell CultureCD3 CD28 BeadsLentiviral VectorTransfectionBSL2 PrecautionsT cell StimulationViral ProductionUltracentrifugationPeripheral Blood Mononuclear CellsTCM

This article has been published

Video Coming Soon